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Abstract

Hypo and hyperarticulation refer to the production of speech with re-
spectively a reduction and an increase of the articulatory efforts compared
to the neutral style. Produced consciously or not, these variations of articu-
latory efforts depend upon the surrounding environment, the communication
context and the motivation of the speaker with regard to the listener. The
goal of this work is to integrate hypo and hyperarticulation into speech syn-
thesizers, such that they are more realistic by automatically adapting their
way of speaking to the contextual situation, like humans do. Based on our
preliminary work, this paper provides a thorough and detailed study on the
analysis and synthesis of hypo and hyperarticulated speech. It is divided
into three parts. In the first one, we focus on both acoustic and phonetic
modifications due to articulatory effort changes. The second part aims at
developing a HMM-based speech synthesizer allowing a continuous control of
the degree of articulation. This requires to first tackle the issue of speaking
style adaptation to derive hypo and hyperarticulated speech from the neu-
tral synthesizer. Once this is done, an interpolation and extrapolation of the
resulting models enables to finely tune the voice so that it is generated with
the desired articulatory efforts. Finally the third and last part focuses on
a perceptual study of speech with a variable articulation degree, where it is
analyzed how intelligibility and various other voice dimensions are affected.
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Speaking Style Adaptation, Voice Quality, Speech Intelligibility

1. Introduction

The “H and H” theory [Lindblom (1983)] proposes two degrees of artic-
ulation of speech: hyperarticulated speech, for which speech clarity tends
to be maximized by increasing the articulation efforts to produce speech,
and hypoarticulated speech, where the speech signal is produced with mini-
mal articulation efforts. Therefore the degree of articulation (DoA) provides
information on the motivation and personality of the speaker vs. the listen-
ers [Beller (2009)]. Indeed, when talkers speak, they also listen [Cooke et al.
(2012)]. Speakers can adopt a speaking style allowing them to be understood
more easily in difficult communication situations. In this work, “hyperartic-
ulated speech” (HPR) refers to the situation of a teacher or a speaker talking
in front of a large audience (important articulation efforts have to be made
to be understood by everybody). “Hypoarticulated speech” (HPO) refers to
the situation of a person talking in a narrow environment or very close to
someone (few articulation efforts have to be made to be understood). “Neu-
tral speech” (NEU) refers to the daily life situation of a person reading aloud
a text emotionless (e.g. no happiness, no anger, no excitement, etc) and
without any specific articulation efforts to produce the speech, keeping only
the sentence intonation: pitch rise for a question, flat pitch for an affirma-
tive or negative sentence, etc. It is worth noting that these three modes of
expressivity are emotionless, but can vary amongst speakers as reported in
[Beller (2009)]. The influence of emotion on the DoA has been studied in
[Beller (2007)] [Beller et al. (2008)] and is out of the scope of this work.

The DoA is characterized by modifications of the phonetic context, of the
speech rate and of the spectral dynamics (vocal tract rate of change). The
common measure of the DoA consists in defining formant targets for each
phone, taking coarticulation into account, and studying differences between
real observations and targets vs. the speech rate. Since defining formant
targets is not an easy task, Beller proposed in [Beller (2009)] a statistical
measure of the DoA by studying the joint evolution of the vocalic triangle
(i.e. the shape formed by the vowels /a/, /i/ and /u/ in the F1 - F2 space)
area and the speech rate. A recent study presented a computational model
of human speech production to provide a continuous adjustment according
to environmental conditions [Nicolao et al. (2012)].
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In direct connection with HPR speech, the “Lombard effect” [Lombard
(1911)] refers to the speech changes due to the immersion of the speaker in
a noisy environment. It is indeed known that a speaker tends to increase
his vocal efforts to be more easily understood while talking in a background
noise [Summers et al. (1988)]. Various aspects of the Lombard effect were
already studied, including acoustic and articulatory characteristics [Garnier
et al. (2006a)] [Garnier et al. (2006b)], features extracted from the glottal
flow [Drugman and Dutoit (2010)], or changes of F0 and of the spectral tilt
[Lu and Cooke (2009)], etc.

Some works have been done in the framework of concatenative speech
synthesis to enhance the speech intelligibility by means of Lombard or HPR
speech. For example, speech intelligibility improvement has been carried out
for a limited domain task in [Langner and Black (2005)] based on voice con-
version techniques. For this, they recorded the CMU SIN database [Langner
and Black (2004)] containing two parallel corpora obtained respectively under
clean and noisy conditions. Another example is the Loudmouth synthesizer
[Patel et al. (2006)], which emulates human modifications (both acoustic and
linguistic) to speech in noise by manipulating word duration, fundamental
frequency and intensity. In [Bonardo and Zovato (2007)], it is proposed to
tune dynamic range controllers (e.g. compressors and limiters) and some
user controls (e.g. speaking rate and loudness) to improve the intelligibility
of synthesized speech. Various methods allowing automatic modification of
speech in order to achieve the same goal are investigated in [Anumanchipalli
et al. (2010)] (e.g. boosting the signal amplitude in important frequency
bands, modification of prosodic and spectral properties, etc). Another work
[Cern̆ak (2006)] introduced an additional measure evaluating intelligibility
for the unit cost in unit selection based speech synthesis.

A new method for extracting or modifying mel cepstral coefficients based
on an intelligibility measure for speech in noise, the Glimpse proportion mea-
sure, has been proposed in [Valentini-Botinhao et al. (2012a)] [Valentini-
Botinhao et al. (2012b)]. Lombard speech synthesis in HMM-based speech
synthesis has also been performed in [Raitio et al. (2011)]. Nonetheless, con-
trarily to the Lombard effect which is a reflex produced unconsciously due to
the noisy surrounding environment [Junqua (1993)], HPR speech is defined as
the voice produced with increased articulatory efforts compared to the NEU
style. From a general point of view, these latter efforts might therefore also
result from a voluntary decision to enhance speech intelligibility to facilitate
the listener’s comprehension (like in the case of teaching). A similar case
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happens when people hyperarticulate in front of interactive systems, hoping
to correct their recognition errors [Oviatt et al. (1998)].

This article provide a detailed and complete study on the integration of
the DoA in HMM-based speech synthesis, based on our preliminary works
on the subject [Picart et al. (2010)] [Picart et al. (2011a)] [Picart et al.
(2011b)] [Picart et al. (2012)]: NEU speech, HPO (or casual) and HPR
(or clear) speech. HPO and HPR speech are of interest in many daily life
applications: expressive voice conversion (e.g. for embedded systems and
video games), “reading speed” control for visually impaired people (i.e. fast
speech synthesizers, more easily produced using HPO speech), improving
intelligibility performance in adverse environments (e.g. GPS voice inside
a moving car, train or flight information in stations or halls), adapting the
difficulty level when learning foreign languages with the student’s progresses
(i.e. from HPR to HPO speech), etc. Note also that the ultimate goal of
our research is to be able to continuously control the DoA of an existing
standard neutral voice for which no HPO and HPR recordings are available.
The results of this article are therefore necessary and essential to reach this
objective.

For this, the article is divided into three main parts. Based on a database
recorded specifically for this work (Section 2) and which contains three par-
allel corpora (one for each DoA to be studied - NEU, HPO and HPR speech),
the first part focuses on the analysis of the effects induced by the DoA on the
speech signal (Section 3). This is performed both at the acoustic (Section
3.1) and phonetic (Section 3.2) levels, in order to have a better understanding
of the specific characteristics governing HPO and HPR speech.

The second part is devoted to the integration of the DoA in the HMM-
based speech synthesis framework (Section 4), which can be subdivided into
three tasks: i) training of a HMM-based speech synthesizer, using the whole
database described in Section 2, for each DoA considered in this work (NEU,
HPO and HPR) in Section 4.1; ii) being able to produce HPO and HPR
speech directly from the NEU synthesizer, by studying the efficiency of speak-
ing style adaptation as a function of the size of the adaptation database (Sec-
tion 4.2); iii) implementing a continuous control (also called tuner) of the
DoA, manually adjustable by the user, to obtain not only NEU, HPO and
HPR speech, but also any intermediate, interpolated or extrapolated DoA in
a continuous way (Section 4.3). Speaker adaptation [Yamagishi et al. (2009)]
is a technique to transform a source speaker’s voice into a target speaker’s
voice, by adapting the source HMM-based model (which is trained using the
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source speech data) with a limited amount of target speech data. The same
idea lies for speaking style adaptation [Tachibana et al. (2003)] [Nose et al.
(2009)].

The third part targets a perceptual multi-dimensional assessment of the
DoA of the synthesizers (Section 5). We first evaluate the necessity of in-
tegrating a variable DoA in a HMM-based speech synthesis system when
this latter is embedded in adverse conditions, which happens very often in
daily life applications: for example, GPS voice inside a moving car (additive
noise), train or flight information in stations or halls (reverberation), etc.
The intelligibility of generated voice is studied as a function of the DoA, as
well as the type and level of degradation. Secondly, the effectiveness of syn-
thesized speech with variable articulatory efforts is compared to the original
recordings through 7 aspects: overall quality, comprehension, pleasantness,
non-monotony, naturalness, fluidity and pronunciation. Finally, Section 6
concludes this research work by summarizing its major accomplishments.

2. Database with various Degrees of Articulation

For the purpose of our research, a new French database was recorded.
It consists of utterances produced by a single male speaker, aged 25 and
native French (Belgium) speaking. The database contains three separate
sets, each set corresponding to one DoA (NEU, HPO and HPR). For each
set, the speaker was asked to pronounce the same 1359 phonetically balanced
sentences (around 75, 50 and 100 minutes of NEU, HPO and HPR speech
respectively), as emotionless as possible. The speaker was placed inside a
sound-proof room, equipped with a screen displaying the sentences to be
pronounced, and with an AKG C3000B microphone. The audio acquisition
system Motu 8pre was used outside this room, with a sampling rate of 44.1
kHz. Finally, a headset was provided to the speaker for both HPO and HPR
recordings, in order to induce him to speak naturally while modifying his
DoA.

While recording HPR speech, the speaker was listening to a version of
his voice modified by a “Cathedral” effect. This effect produces a lot of
reverberations (as in a real cathedral), forcing the speaker to talk slower
and as clearly as possible (more articulatory efforts to produce speech). The
“Cathedral” environment was generated by the digital multi-effects processor
Behringer Virtualizer DSP1000. On the other hand, while recording HPO
speech, the speaker was listening to an amplified version of his own voice.
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This effect produces the impression of talking very close to someone in a
narrow environment, allowing the speaker to talk faster and less clearly (less
articulatory efforts to produce speech). The amplification effect was created
using the Powerplay Pro-8 HA8000 amplifier. Proceeding that way allows us
to create a “standard recording protocol” to obtain repeatable conditions if
required in the future.

Recordings were then resampled to 16 kHz and normalized in loudness.
This is because we want our study to be independent of the level of energy
of speech, and focus on the phonetic and prosodic modifications, as well as
in the acoustic changes related to the vocal tract function and to the glottal
production. Finally, utterances have been segmented such that they start
and finish with a silence of about 200 ms.

3. Acoustic and Phonetic Features in Hypo and Hyperarticulated
Speech

One can expect important changes during the production of HPO and
HPR speech, compared to NEU speech style. For example, [Oviatt et al.
(1998)] provide, amongst others, a comprehensive analysis of acoustic, prosodic,
and phonological adaptations to speech during human-computer error reso-
lution. These modifications could be categorized in two main parts: acoustic
(Section 3.1) and phonetic (Section 3.2) variations. The first part is related
to the speech production using the vocal tract (Section 3.1.1) and the glot-
tal excitation (Section 3.1.2), while the second part focuses on the changes
induced on the phonetic transcriptions. The latter section analyses respec-
tively glottal stops (Section 3.2.1), phone variations (Section 3.2.2), phone
durations (Section 3.2.3), and the speech rate (Section 3.2.4) for each DoA.
Note that all the results we report throughout this section were obtained by
an analysis led on the entire original corpora (as described in Section 2).

3.1. Acoustic Analysis

Acoustic modifications in expressive speech have been extensively stud-
ied in the literature [Klatt and Klatt (1990)], [Childers and Lee (1991)],
[Keller (2005)]. Important changes related to the response of the vocal tract
(also referred to as supralaryngeal structures in articulatory phonetics [Laver
(1994)]) are expected in this study. Indeed, the articulatory strategy adopted
by the speaker may dramatically vary during the production of HPO and
HPR speech. Although it is still not clear whether these modifications consist
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of a reorganization of the articulatory movements, or of a reduction or an am-
plification of the normal ones, speakers generally tend to consistently change
their way of articulating. According to the “H and H” theory [Lindblom
(1983)], speakers minimize their articulatory trajectories in HPO speech, re-
sulting in a low intelligibility, while an opposite strategy is adopted in HPR
speech. As a consequence, vocal tract (or supralaryngeal) configurations may
be strongly affected. The resulting changes are studied in Section 3.1.1. In
addition, the produced voice quality is also altered. Since voice quality vari-
ations are mainly considered to be controlled by the glottal source [Drugman
et al. (2012)] [D’Alessandro (2006)] [Södersten et al. (1995)], Section 3.1.2
focuses on the modifications of glottal characteristics (also sometimes called
laryngeal features [Laver (1994)]) with regard to the DoA.

3.1.1. Vocal Tract-based Modifications

Beller analyzed in [Beller (2009)] the evolution of the vocalic triangle with
the DoA, providing interesting information about the variations of the vocal
tract resonances. The vocalic triangle is the shape formed by the vowels /a/,
/i/ and /u/ in the space constituted by the two first formant frequencies F1
and F2 (here estimated via the Wavesurfer software [Sjolander and Beskow
(2000)]). Figure 1 displays, for the original sentences, the evolution of the
vocalic triangle with the DoA. Dispersion ellipses are also indicated on this
figure for information. It is observed that dispersion can be high for the vowel
/u/ (particularly for F2), while data are relatively well concentrated for vow-
els /a/ and /i/. A significant reduction of the vocalic triangle area is clearly
noticed as speech becomes less articulated: from HPR (0.274 kHz2) to NEU
(0.201 kHz2) to HPO speech (0.059 kHz2). As a consequence of this reduc-
tion, acoustic targets become less separated in the vocalic space, confirming
that articulatory trajectories are less marked during an HPO strategy. This
explains also partially the lowest intelligibility in HPO speech. The opposite
tendency is observed for HPR speech, resulting from the increased articula-
tory efforts produced by the speaker.

3.1.2. Glottal-based Modifications

As the most important perceptual glottal feature, pitch histograms are
displayed in Figure 2. It is clearly noted that the more speech is articulated,
the higher the fundamental frequency on average and the more important its
dynamics range. Besides these prosodic modifications, we investigated how
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Figure 1: Vocalic triangle estimated on the original recordings for each DoA, together with
dispersion ellipses.

some characteristics of the glottal flow are affected. The interested reader is
referred to [Picart et al. (2010)] for more details about the following results.

The glottal source is estimated by the Complex Cepstrum-based Decom-
position algorithm (CCD, [Drugman et al. (2011)]) as it was shown in [Drug-
man et al. (2012)] to provide the best results of the glottal source estima-
tion. This technique relies on the mixed-phase model of speech [Bozkurt
and Dutoit (2003)]. According to this model, speech is composed of both
minimum-phase and maximum-phase components, where the latter contri-
bution is only due to the glottal flow. The averaged magnitude spectrum
of the glottal source for each DoA was computed using this technique, on
the original data contained in our database (Section 2), and our conclusive
observations are the following:

• resulting spectra have a strong similarity with models of the glottal
source (such as the LF model [Fant et al. (1985)]), which corroborates
the validity of these models and of the estimation process;

• a high DoA is characterized by a glottal flow containing more energy
in the high frequencies, compared to the NEU case;

• the glottal formant frequency increases with the DoA, meaning that
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the glottal open phase is more abrupt in HPR speech.
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Figure 2: Pitch histograms for each DoA.

In some approaches, such as the Harmonic plus Noise Model (HNM,
[Stylianou (2001)]) or the Deterministic plus Stochastic Model of residual
signal (DSM, [Drugman and Dutoit (2012)]) which will be used for synthesis
in Section 4, the speech signal is considered to be modeled by a non-periodic
component beyond a given frequency. This maximum voiced frequency (Fm)
demarcates the boundary between two distinct spectral bands, where respec-
tively an harmonic and a stochastic modeling (related to the turbulences of
the glottal airflow) are supposed to hold. From our experiments, it turns out
that:

• the more speech is articulated, the higher Fm, the stronger the har-
monicity, and consequently the weaker the presence of noise in speech;

• the average values of Fm are 4215 Hz (HPR), 3950 Hz (NEU) and 3810
Hz (HPO). Note that this confirms the choice of 4 kHz for the synthesis
of NEU speech in [Pantazis and Stylianou (2008)] or [Drugman and
Dutoit (2012)].

3.2. Phonetic Analysis

In complement to the acoustic analysis of HPO and HPR speech in Sec-
tion 3.1, we also investigate their phonetic modifications compared to NEU
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style. In the following, glottal stops (Section 3.2.1), phone variations (Section
3.2.2), phone durations (Section 3.2.3) and speech rates (Section 3.2.4) are
studied. These results are here reported for the whole database described in
Section 2, although such phonetic changes are known to have a certain inter-
speaker variability [Beller (2009)]. Note that the database was segmented
using HMM forced alignment [Malfrere et al. (2003)] using the 36 standard
French phones and the SAMPA phonetic alphabet.

3.2.1. Glottal Stops

A glottal stop [Gordon and Ladefoged (2001)] [Borroff (2007)] is a cough-
like explosive sound released just after the silence produced by the complete
glottal closure. In French, such a phenomenon happens when the glottis
closes completely before a vowel. A method for detecting glottal stops in
continuous speech was proposed in [Yegnanarayana et al. (2008)]. However,
we chose to detect glottal stops manually in this study. The amount of glottal
stops for each vowel is displayed in Figure 3, for each DoA. It interestingly
appears that HPR speech is characterized by a higher amount of glottal
stops (almost always double) than NEU and HPO speech, between which
no sensible modification is noticed. This is an expected characteristic of the
DoA. Indeed, HPR speech aims at increasing the intelligibility of a message,
compared to NEU style, requiring more articulatory efforts. For example,
word emphasis highlighting important information can be produced by the
speaker under HPR by inserting a short break before the emphasis, producing
at the same time a glottal stop.

3.2.2. Phone Variations

Compared to NEU speech style, any phonetic insertion, deletion and sub-
stitution made by the speaker under HPO and HPR are part of the phone
variations. This study has been performed both at the phone level, consider-
ing the phone position in the word, and at the phone group level, considering
groups of phones that were inserted, deleted or substituted.

Table 1 presents the total proportion of phone deletions in HPO speech
and phone insertions in HPR speech (first row) for each phone (the most
significant results are highlighted). The position of these deleted and inserted
phones inside the words are also indicated: at the beginning (second row),
in the middle (third row) and at the end (fourth row). Note that only the
phones with the most relevant differences are shown in this table for the sake
of conciseness (see [Picart et al. (2010)] for more results). Note also that
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Figure 3: Number of glottal stops for each vowel and each DoA.

since there is no significant deletion process in HPR, no significant insertion
process in HPO and no significant substitution process in both cases, they
are not shown in Table 1.

Phone /z/ /Z/ /l/ /R/ /@/ / /

Tot 3.1 5.1 2.2 3.4 29.7 14.2
Deletions Beg 0.0 4.95 0.26 0.03 11.49 14.2
(HPO) Mid 0.94 0.15 0.44 1.62 2.85 0.0

End 2.16 0.0 1.50 1.75 15.39 0.0

Tot 4.0 0.6 0.1 0.2 40.0 26.5
Insertions Beg 0.0 0.0 0.025 0.0 0.60 26.5

(HPR) Mid 0.41 0.15 0.025 0.04 1.68 0.0
End 3.59 0.45 0.05 0.16 37.72 0.0

Table 1: Deleted and inserted phones percentage in HPO and HPR speech respectively,
compared to NEU style, and their repartition inside the words: total (first row), beginning
(second row), middle (third row), end (fourth row).

The most important variations concern breaks / / and Schwa /@/ dele-
tions for HPO speech and insertions for HPR speech. Moreover, HPO speech
counts also other significant phone deletions, i.e. /R/, /l/, /Z/ and /z/.

Schwa, also called “mute e” or “unstable e”, is very important in French.
It is the only vowel that can or cannot be pronounced (all other vowels
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should be clearly pronounced), and several authors have focused on its use
in French (see for example [Browman and Goldstein (1994)], [Adda-Decker
et al. (1999)]). Besides, it is widely used by French speakers to mark hes-
itations. These conclusions with the phone Schwa are therefore probably
specific to French and an extension of this phenomenon to other languages
would therefore require further study.

The analysis performed at the phone group level revealed similar tenden-
cies. While no significant group insertions in HPR speech have been detected,
frequent phone group deletions in HPO speech were found: e.g. /R@/, /l@/
at the end of the words, “je suis” (which means “I am”) becoming “j’suis”
or even “chui”, etc. However, no significant phone groups substitutions were
observed in either cases.

3.2.3. Phone Durations

It is intuitively expected that the DoA influences phone durations, since
HPO and HPR speech respectively target different intelligibility goals. This
will directly affect the speech rate (Section 3.2.4). Some studies confirm that
thought. Evidences for the Probabilistic Reduction Hypothesis are explained
in the approach exposed in [Jurafsky et al. (2001)]: word forms are reduced
when they have a higher probability, and this should be interpreted as evi-
dence that probabilistic relations between words are represented in the mind
of the speaker. Similarly, [Baker and Bradlow (2009)] examines how that
probability (lexical frequency and previous occurrence), speaking style, and
prosody affect word duration, and how these factors interact between each
others.

Phone duration variations between NEU, HPO and HPR speech were
studied in [Picart et al. (2010)]. Vowels and consonants were grouped ac-
cording to broad phonetic classes. We showed in that study that durations
of front, central, back and nasal vowels are shorter during HPO and longer
under HPR speech on average. The same conclusion was also true for plosive
and fricative consonants. HPO speech contains shorter and fewer breaks,
while HPR speech involves more of them, as long as those in NEU speech.
We also interestingly noted a very high number of short-duration (around 30
ms) semi-vowels and trill consonants in HPO speech.

3.2.4. Speech Rate

Speaking rate has been found to be related to many factors [Yuan et al.
(2006)]. It is often defined as the average number of syllables uttered per
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second (pauses excluded) in a whole sentence [Beller et al. (2006)] [Roekhaut
et al. (2010)]. Table 2 compares the speaking styles corresponding to each
DoA, following the previous definition.

Results HPR NEU HPO

Total speech time [s] 6076 (+ 40.2 %) 4335 2926 (- 32.5 %)
Total syllable time [s] 5219 (+ 44.3 %) 3618 2486 (- 31.3 %)
Total pausing time [s] 857 (+ 19.5 %) 717 440 (- 38.6 %)

Total number of syllables 19736 (+ 7.1 %) 18425 17373 (- 5.7 %)
Total number of breaks 1213 (+ 43.4 %) 846 783 (- 7.4 %)
Speech rate [syllable/s] 3.8 (- 25.5 %) 5.1 7.0 (+ 37.3 %)

Relative pausing time [%] 14.1 (- 14.5 %) 16.5 15.1 (- 8.5 %)

Table 2: Speech rates and related time information for NEU, HPO & HPR speech, together
with the positive or negative variation from the NEU style (in [%]).

As expected, HPR speech is characterized by a lower speech rate, a higher
number of breaks (thus a longer pausing time), more syllables (due to final
Schwa insertions in particular), resulting in an increase of the total speech
time. On the other side, HPO speech is characterized by a higher speech
rate, a lower number of breaks (thus a shorter pausing time), less syllables
(due to final Schwa and other phone groups deletions), resulting in a decrease
of the total speech time.

An interesting property can be noted: since both the total pausing time
and the total speech time vary in about the same proportion (increase in
HPR speech and decrease in HPO speech), the relative pausing time (and
consequently the relative speaking time) percentage is almost independent
of the speaking style. It seems that a speaker modifying his DoA controls
unconsciously the relative proportions of speech and pausing time.

4. Continuous Control of the Degree of Articulation in HMM-
based Speech Synthesis

Only a few studies have been conducted on the synthesis of the DoA.
Wouters made the first attempts within the context of concatenative speech
synthesis [Wouters (2001)], by modifying the spectral shape of acoustic units
according to a predictive model of the acoustic-prosodic variations related
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to the DoA. In this work, we focus on the synthesis of the DoA in the con-
text of statistical parametric speech synthesis, using the HMM-based Speech
Synthesis System HTS [Zen et al. (2009)].

First of all, a specific HMM-based speech synthesizer is built for each DoA
(NEU, HPO and HPR), using the databases described in Section 2. The effi-
ciency of speaking style adaptation to produce NEU, HPO and HPR speech
directly from the NEU synthesizer is then studied. Finally, the implementa-
tion of a continuous control (tuner) of the DoA on this NEU synthesizer is
detailed, with the goal of obtaining any interpolated or extrapolated DoA in
a continuous way.

4.1. Speaker-Independent Full Data Model Training

4.1.1. Method

Relying on the implementation of the HTS toolkit1 (version 2.1) publicly
available, a HMM-based speech synthesizer [Zen et al. (2009)] was built for
each DoA (NEU, HPO and HPR). Each database recorded as explained in
Section 2 was used for training the corresponding synthesizer. A common
practice when dealing with a database consists in keeping 90% of the data
for training the models and leaving the rest for testing (here for synthesis).
Therefore, for each DoA, 1220 sentences sampled at 16 kHz were used for
the training (called the training set), leaving around 10% of the database for
synthesis (called the synthesis set).

The speech signal is modeled and vocoded by a source-filter approach.
The filter is represented by the Mel Generalized Cepstral (MGC [Tokuda
et al. (1994)]) coefficients (with α = 0.42, γ = 0 and order of MGC analysis =
24), and the excitation signal is based upon the Deterministic plus Stochas-
tic Model (DSM) of the residual signal proposed in [Drugman and Dutoit
(2012)]. This model was shown to significantly increase the naturalness of
the produced speech. More precisely, both deterministic and stochastic com-
ponents of DSM were estimated on the training dataset for each DoA. The
spectral boundary between these two components was fixed as the averaged
value of the maximum voiced frequency described in Section 3.1.2. Note also
that our version of HTS used 75-dimensional MGC parameters (including ∆
and ∆2), and each covariance matrix of the state output and state duration
distributions were diagonal.

1http://hts.sp.nitech.ac.jp/
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Figure 4: Standard training of the NEU, HPO and HPR full data models (Section 4.1.1),
from the database containing 1220 training sentences for each DoA. Adaptation of the NEU
full data model using CMLLR transform with HPO and HPR speech data to produce HPO
and HPR adapted models (Section 4.2.1). Implementation of a tuner, manually adjustable
by the user, for a continuous control of the DoA (Section 4.3.1).

Since the three synthesizers implemented at this point are trained on the
entire training sets, they will be referred to as full data models in the following
of this work. Figure 4 shows the general architecture of our system. At this
point of the text, only the full data models training should be considered.
The following evaluations are led on the synthesis set of the database.

4.1.2. Objective Evaluation

An objective evaluation is first conducted in order to assess the quality
of the full data models. Yamagishi proposed in [Yamagishi and Kobayashi
(2007)] for this the use of the following three objective measures: the average
Mel-Cepstral Distortion (MCD, expressed in decibel), the Root-Mean-Square
Error (RMSE) of log F0 (RMSE lf0, expressed in cent), the RMSE of vowel
durations (RMSE dur, expressed in terms of number of frames). These mea-
sures reflect differences regarding three complementary aspects of speech.
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The RMSE lf0 is obviously computed for regions where both the original
recordings and the full data models are voiced, since log F0 is not observed
in unvoiced regions. Cent is a logarithmic unit used for musical intervals (100
cents correspond to a semitone, twelve semitones correspond to an octave,
which means doubling of the frequency).

The MCD between the target and the estimated mel-cepstra coefficients
(noted respectively mc

(t)
d and mc

(e)
d , and computed from the original and

synthesized versions of the same utterance) is expressed as:

MCD =
10

ln(10)

√√√√2
25∑

d=1

(mc
(t)
d −mc

(e)
d )2 (1)

Target and estimated frames should have a one-to-one correspondence in
order to compute an objective distance, which could either be for cepstrum
or pitch with dedicated formulae for each of them (Equation 1 in the case
of cepstrum). This is obviously not the case when computing the objective
distance on phone duration.

These objective measures are computed for all the vowels of the synthesis
set of the database. The mean MCD, RMSE lf0 and RMSE dur, together
with their 95% confidence intervals, are shown in Table 3 for each DoA.
We observe in this objective evaluation that the MCD increases from HPR
to HPO speech, while RMSE lf0 and RMSE dur decrease with the DoA.
Considering that HPR speech is characterized by longer phone durations
and HPO speech by shorter ones (Section 3.2.3):

• modeling the HPR speech cepstrum seems easier, as more speech data
are indirectly available to estimate reliably the corresponding models
compared to the NEU style (which can be seen with the MCD). On
the other hand, modeling HPO speech cepstrum seems more difficult,
as less speech data are indirectly available. Note that 1 dB is usually
accepted as the difference limen for spectral transparency [Paliwal and
Atal (1993)];

• each HPR phone therefore contains a higher number of frames, and
errors induced at the frame level by the HMM-based modeling could
thus have more impact on the synthesized speech quality, while each
HPO phone contains fewer frames, leading to the opposite conclusion.
This explains the RMSE lf0 and RMSE dur results in Table 3.
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Results HPR NEU HPO

Mean MCD ± CI 5.9 ± 0.1 6.3 ± 0.2 6.9 ± 0.1
RMSE lf0 ± CI 213.1 ± 31.1 170 ± 23.5 112.3 ± 14.3
RMSE dur ± CI 9 ± 0.6 6.8 ± 0.6 4.6 ± 0.4

Table 3: Objective evaluation results: average MCD [dB], RMSE lf0 [cent] and RMSE dur
[number of frames] with their 95% confidence intervals (CI) for each DoA.

For comparison purpose, similar quantitative results were observed for
speaker dependent model [Yamagishi and Kobayashi (2007)], despite some
differences in the training process and in the language used for training the
models (Japanese). Differences between the results reported in [Yamagishi
and Kobayashi (2007)] and ours are rather minor, as we get slightly worse val-
ues for the MCD, slightly better performance for RMSE lf0 and comparable
values for RMSE dur.

It is also worth noticing that the vocalic space reduces from HPR (0.299
kHz2) to NEU (0.201 kHz2) to HPO speech (0.063 kHz2). These numbers
obtained on synthesized speech are to compare to those of Section 3.1.1 which
were carried out on the original recordings. Interestingly, a high similarity
can be underlined which confirms a good reproduction of DoA changes by
HMMs.

4.1.3. Subjective Evaluation

A subjective evaluation has then been performed in order to confirm the
results of the objective test. For this evaluation, participants were asked
to listen to three sentences: A, the original sentence; B, the copy-synthesis
version of the original sentence using the DSM vocoder; C, the sentence
synthesized using DSM and whose parameters are generated by the statistical
models trained with HTS. Participants were given a 9-point discrete scale
and asked to score the distance, in terms of overall speech quality, of B with
regards to both A and C. In other words, this score was allowed to vary from
0 (i.e. B has the same quality as A) to 9 (i.e. B has the same quality as C).

The reason for using such a self-designed scale is to ease the listener’s
ability to evaluate the relative speech synthesis quality. Indeed, evaluating
the perceptual position of B between the lower boundary A and the upper
one C is more coherent than estimating its position knowing only one of
these two boundaries. The latter case brings the problem of the extent until
which the score could be set by the listener, and the problem of inter-listener
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variability concerning evaluations.
The passage from A to C accounts for two possible sources of degradation:

vocoding (from A to B) and HMM-based statistical processing (from B to
C). Since we can assume that the vocoding effect is almost the same for each
DoA, the distance of B with regards to A and C is informative about the
effectiveness of the statistical process. Indeed, the lower the score, the more
B is close to A than it is from C, and consequently the more dominant is the
statistical process among the degradation sources. In conclusion, the higher
the score, the better the steps of HMM modeling and generation have been
performed.

The test consists of 15 triplets: 5 sentences per DoA randomly chosen
amongst the synthesis set, 3 DoA, giving a total of 45 sentences. Before
starting the test, the listener was provided with some reference sentences
covering most of the variations to help him familiarizing with the scale. Dur-
ing the test, he was allowed to listen to the triplet of sentences as many times
as wanted (participants were nonetheless advised to listen to A and C before
listening to B, in order to know the boundaries of the scale). However they
were not allowed to come back to previous sentences after validating their
decisions.

26 people, mainly naive listeners, participated to this evaluation. The
mean scores for each DoA, on the 9-point scale, are shown in Figure 5. It is
observed that the more speech is articulated, the higher the score and there-
fore the lower the degradation due to the HMM process. It is worth noting
that these results corroborate the conclusions of the objective evaluation.
The formant trajectories are enhanced in HPR speech and are less marked
in HPO speech, compared to the standard NEU style. Due to the intrinsic
statistical modeling by HMMs, these trajectories are (over) smoothed, loos-
ing the actual finest information characterizing the DoA. Among others, this
is particularly true for HPO speech.

4.2. Speaking Style Adaptation

One way to perform HMM-based speech synthesis is to train a full data
model using a database containing specific data, as in Section 4.1 (in this
case, the database contains speech sentences pronounced with different DoA).
Compared to unit-selection speech synthesis, HMM-based speech synthesis
has many advantages, mainly related to its inherent flexibility due to the
statistical modeling process [Zen et al. (2009)]. For example, voice adapta-
tion techniques can be applied to change voice characteristics and prosodic
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Figure 5: Subjective evaluation results: overall speech quality of the full data models
decreases with the DoA (mean score with its 95% confidence interval).

features of synthetic speech [Yamagishi et al. (2009)]. Yamagishi proposed in
[Yamagishi and Kobayashi (2007)] the adaptation of a specific model, called
average-voice model, to a specific target speaker. The average-voice model
is computed once for all over a database containing many different speakers.
This technique allows to provide high quality speech synthesis using a limited
amount of adaptation data [Yamagishi (2006)].

In this section, we focus on the adaptation of a specific source speaker,
the NEU full data model trained in Section 4.1, such that the system is able
to generate HPO and HPR speech.

4.2.1. Method

This NEU full data HMM-based speech synthesizer was adapted using the
Constrained Maximum Likelihood Linear Regression (CMLLR) transform
[Digalakis et al. (1995)] [Gales (1998)] in the framework of Hidden Semi
Markov Model (HSMM) [Ferguson (1980)] with HPO and HPR speech data in
order to produce respectively a HPO and HPR HMM-based synthesizer. The
linearly-transformed models were further optimized using MAP adaptation
[Yamagishi et al. (2009)].

In HSMM-based speech synthesis [Zen et al. (2007)], state duration dis-
tributions are modeled explicitly, allowing in this way a better representation
of the temporal structure of human speech. HSMM has also the advantage of
incorporating state duration models explicitly in the expectation step of the
Expectation-Maximization (EM) algorithm. Finally, HSMM is more conve-
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nient during the adaptation process to simultaneously transform both state
output and state duration distributions.

MLLR adaptation is the most popular linear regression adaptation tech-
nique. The mean vectors and covariance matrices of state output distribu-
tions of the target speaker’s model are obtained by linearly transforming the
mean vectors and covariance matrices of state output distributions of the
source speaker’s model [Yamagishi and Kobayashi (2007)]. The same idea
holds for CMLLR. While MLLR is a model adaptation technique, CMLLR is
a feature adaptation technique. In a model adaptation technique, a set of lin-
ear transformations is estimated to shift the means and alter the covariances
in the source speaker’s model so that each state in the HMM system is more
likely to generate the adaptation data. In a feature adaptation technique,
a set of linear transformations is estimated to modify the feature vectors in
the source speaker’s model so that each state in the HMM system is more
likely to generate the adaptation data.

The implementation of our synthesizers is summarized in Figure 4. Since
the two synthesizers implemented in this section are created by adapting the
NEU full data model using HPO and HPR data, they will be referred to as
adapted models in the following of this work.

The efficiency of the adaptation process will be now assessed through
both an objective and a subjective evaluation on the synthesis set of the
database, composed of sentences which were neither part of the training set
nor of the adaptation set.

4.2.2. Objective Evaluation

The goal of this objective evaluation is to assess the quality of the adapted
synthesized speech when the number of adaptation sentences increases. For
this, we use the measures introduced in Section 4.1.2, namely the aver-
age MCD, the RMSE lf0 and the RMSE dur. As an illustration, Figure
6 presents the average MCD, computed for all the vowels of the synthesis
set, between the adapted and the full data models.

Figure 6 clearly shows that the MCD decreases when more speech data are
used for adaptation. The distance between the HPR full data and adapted
models is bigger than the gap between the HPO full data and adapted mod-
els, which could be explained by the adaptation process itself. On one hand,
the HPR speech spectrum is richer, more variable, complex and enhanced,
compared to the NEU style. On the other hand, HPO speech spectrum is
smoother and more flat than the NEU speech one. This difference could ex-
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Figure 6: Objective evaluation - Average mel-cepstral distortion [dB] computed between
the adapted and the full data models.

plain why the HPR spectrum is harder to adapt from the NEU style (leading
to a higher MCD) than the HPO spectrum. Note that the results in Figure 6
were obtained using up to 1220 adaptation sentences for both HPO and HPR
speech. Nonetheless, since the speaking rate in HPR speech is known to be
much slower than in HPO speech (almost the double - see Section 3.2.4), this
explains why these curves do not cover the same total adaptation duration.

We also observed a decrease of RMSE lf0 and RMSE dur when the amount
of speech data available for adaptation increases. They both were found
higher for HPR speech than for HPO speech. However, while the MCD is
continuously decreasing when more speech data are used for adaptation, it
was shown that RMSE lf0 and RMSE dur decrease until around 7 minutes
of HPO speech or 13 minutes of HPR speech and saturate to specific values
when more speech data are used (the interested reader is referred to [Picart
et al. (2011a)] for more details). It can be noted from Figure 6 that around
7 minutes of HPO speech or 13 minutes of HPR speech are needed to adapt
cepstra correctly, while it was shown in [Picart et al. (2011a)] that around 3
minutes of HPO speech or 7 minutes of HPR speech are sufficient to adapt
F0 and phone duration with a good quality.

Figure 6 also shows some imperfections of the adaptation process based
on HMM. Indeed, the curves are saturating towards non-zero values. Slight
audible differences could be heard between the HPO or HPR full data models
and the models adapted from the NEU full data model using the entire HPO
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or HPR training set. However, informal listening tests showed that these
slight differences cannot be said to give worse or better speech synthesis
results. As already stated, 1 dB is usually accepted as the difference limen
for spectral transparency [Paliwal and Atal (1993)].

For comparison purpose, the same kind of trends were observed for inter-
speaker voice adaptation [Yamagishi and Kobayashi (2007)], despite some
differences in the training process and in the number of training and adap-
tation data.

4.2.3. Subjective Evaluation

A Comparison Category Rating (CCR) evaluation is now performed in
order to confirm the conclusions of the objective test. For this evaluation,
listeners were asked to listen to two sentences: A, the sentence synthesized
by the full data model; B, the sentence synthesized by the adapted models
using 10, 20, 50, 100 or 1220 sentences. CCR values range on a gradual scale
varying from 1 (meaning that A and B are very dissimilar) to 5 (meaning the
opposite). A score of 3 is given if the two versions are found to be slightly sim-
ilar. Listeners were asked to score the overall speech quality of B compared
to A. The higher the CCR score, the more efficient the adaptation process.
Unlike the objective evaluation, there is no need here to have a one-to-one
correspondence between the target and the estimated frames. Therefore au-
dio examples used for this evaluation were entirely generated (i.e. cepstrum,
F0 and phone duration) by the full data and adapted HMM-based speech
synthesizers.

The test consists of 30 pairwise comparisons. The same experimental
protocol as in Section 4.1.3 was applied. 26 people, mainly naive listeners,
participated to this evaluation. Figure 7 displays the mean CCR scores for
both DoA. The same kind of tendency as in the objective evaluation can be
seen, i.e. HTS is able to produce better adapted HPO speech than adapted
HPR speech. As expected, we also see that the speech synthesis quality
of the adapted models increases with the number of adaptation sentences,
independently of the DoA. Nonetheless, a reasonably high-quality HMM-
based speech synthesis can be achieved for both DoA with around 100 HPO
or HPR adaptation sentences. It can be indeed seen from Figure 7 that this
corresponds to CCR scores around 3.5, which means that the adapted voice,
compared to the full data model, is perceived to have a quality between
“slightly similar” and “similar”.
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Figure 7: Subjective evaluation of the adapted models - Effect of the number of adaptation
sentences on CCR scores (mean scores with their 95% confidence intervals).

4.3. Continuous Control of the Articulation Degree (Interpolation and Ex-
trapolation)

This section is devoted to the implementation and quality assessment of
a continuous control of the DoA in HMM-based speech synthesis, in order to
continuously and smoothly change the DoA of the NEU voice towards and
possibly beyond our adapted HPO or HPR voices.

Thanks to both the statistical and parametric representation used in
HMM-based speech synthesis, interpolation between the speaking styles is
possible. Speaker interpolation is performed in [Yoshimura et al. (2000)] by
interpolating HMM parameters amongst some representative speakers HMM
sets. They assume that each HMM state has a single Gaussian output dis-
tribution, reducing the problem to the interpolation amongst N Gaussian
distributions. Three main methods for modeling and interpolating between
speaking styles have been proposed: style-dependent modeling and style
mixed modeling [Yamagishi et al. (2003)]; model interpolation technique
[Yoshimura et al. (2000)]; MLLR-based model adaptation technique [Tamura
et al. (2001)]. In this latter study, the speaking styles they considered are
various emotions, while they refer in our case to the DoA. Dialect interpo-
lation has been performed in [Pucher et al. (2010)] using dialect-dependent
and dialect-independent modelings. [Kazumi et al. (2010)] suggested factor-
analyzed voice models for creating various voice characteristics in HMM-
based speech synthesis. Recently, a computational model of human speech
production to manage phonetic contrast along the “H and H” continuum has
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been proposed and implemented in [Nicolao et al. (2012)], allowing speaking
style modification in HMM-based speech synthesis according to the external
acoustic conditions.

4.3.1. Method

Our implementation for a continuous control of the DoA makes use of 3
models: i) the NEU full data model; ii) the adapted HPO model; iii) the
adapted HPR model, as it is illustrated in Figure 4. Both adapted models
were obtained using the entire training HPO and HPR sets (1220 sentences)
in order to obtain the finest quality for model interpolation and extrapolation
and consequently for the resulting delivered speech synthesis.

Because decision trees of the NEU full data model are not modified during
the adaptation process, there is a one-to-one correspondence between the
probability density functions (i.e. the leaf nodes of the decision trees) of
the NEU full data model and the adapted HPO or HPR models. Therefore
the continuous control of the DoA is achieved by linearly interpolating or
extrapolating the mean and the diagonal covariance matrices of each state
output and state duration probability density functions (mel-cepstrum, log
F0 and duration distributions).

Since no reference speech data are available to evaluate objectively the
quality of interpolation and extrapolation, only two subjective tests are con-
ducted. The way listeners perceive the interpolation and extrapolation of the
DoA is first assessed in Section 4.3.2. This evaluation is then complemented
with a Comparative Mean Opinion Score (CMOS) test in Section 4.3.3, to
assess the quality of this interpolation and extrapolation.

4.3.2. Perception of the degree of articulation

For this evaluation, listeners were asked to listen to four sentences: the
three reference sentences A (HPO), B (NEU) and C (HPR) synthesized by
the full data models; the test sentence X, which could be either interpolated
between A and B or B and C, or extrapolated beyond A or C. Then they
were given a discrete scale, ranging from -1.5 to 1.5 by a 0.25 step. A, B and
C were placed at -1, 0 and 1 respectively. Finally, participants were asked to
tell where X should be located on that scale, X being different from A, B or
C.

The test consisted of 10 quadruplets. Five sentences per DoA were ran-
domly chosen amongst the synthesis set of the database. 34 people, mainly
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naive listeners, participated to this evaluation, under the same listening con-
ditions as in Section 4.1.3.
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Figure 8: Subjective evaluation - Perceived interpolation and extrapolation ratio as a func-
tion of the actual interpolation and extrapolation ratio, together with its 95% confidence
interval.

Figure 8 displays the evolution of the average perceived interpolation and
extrapolation ratio, as a function of the actual ratio which is applied.

A good linear correspondence is achieved between the perceived and the
reference DoA. As expected, this graph is monotonically increasing, showing
that listeners were able to perceive and recognize the continuous control of the
DoA. Our interpolation and extrapolation method thus proved to be efficient
by providing realistic DoA. However, due to the constraints imposed on the
discrete scale, i.e. the user was not allowed to select reference (-1, 0, 1) or
extreme (lower than -1.5, higher than 1.5) values, we may have introduced a
small bias in the assessment of the perceived DoA. This bias leads the results
to suffer from border effects. Indeed, as participants do not know in advance
the maximum variability during the test, they tend to naturally keep out of
the border values composing the scale. Extending this scale one point further
on both side of a discrete scale, or the use of a continuous scale also extended
beyond the range of usual values, should give more accurate results.

4.3.3. Quality of the degree of articulation

In a second subjective test, participants were asked to score the overall
speech quality of X versus B (the NEU synthesis), leaving aside the difference
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in DoA between X and B. For this, we used a CMOS test in order to assess
the quality of the interpolated and extrapolated speech synthesis. CMOS
values range on a gradual scale varying from -3 (meaning that X is much
worse than B) to +3 (meaning the opposite). A score of 0 is given if the
quality of both versions is found to be equivalent.

Table 4: Subjective evaluation (CMOS test) - Perceived synthesis quality of the test sen-
tence X vs. the NEU sentence B (CMOS scores with their 95% confidence intervals).

HPR HPO

DoA Quality DoA Quality
0.25 0.03 ± 0.40 - 0.25 - 0.29 ± 0.41
0.5 -0.09 ± 0.46 - 0.5 - 0.47 ± 0.37
0.75 0.15 ± 0.41 - 0.75 - 0.53 ± 0.37
1.25 -0.65 ± 0.49 - 1.25 - 0.35 ± 0.57
1.5 -1.06 ± 0.50 - 1.5 - 0.79 ± 0.57

Table 4 presents the averaged CMOS scores of the perceived synthesis
quality for each DoA. The methods proposed in this work provides a high-
quality rendering of the DoA. It can be observed that interpolated HPR
speech (with a DoA between 0 and 1) seems to have about the same quality
as NEU speech, while a slight degradation is observed for all other DoA (on
the CMOS scale, a score of -1 means “slightly worse”). Similarly to Section
4.1, HTS provides a better rendering of HPR speech, compared to the HPO
speech case. Note also the large size of the 95% confidence intervals for
each DoA, and mainly when extrapolating. This could be explained by the
difficulty to compare speech quality alone, leaving aside the fact that the
DoA of X and B could be different.

5. Perceptual Considerations of Hypo and Hyperarticulated Speech

This section is devoted to the effects leading to and induced by the per-
ception of the DoA. As already mentioned in the introduction, increasing
the intelligibility of a synthesizer performing in adverse conditions has a lot
of daily life applications. For this, [Erro et al. (2012)] proposed to improve
the intelligibility of speech by manipulating the parameters (spectral slope
and amplification of low-energy parts of the signal) of an harmonic speech
model. Five energy reallocation strategies to increase speech intelligibility in
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noisy conditions are compared in [Tang and Cooke (2010)]. Regarding the
evaluation, the work presented in [Valentini-Botinhao et al. (2011)] interest-
ingly investigated several objective measures to predict the intelligibility of
synthetic speech.

The perceptual prevalence of phonetic, prosodic and filter information has
been studied in [Picart et al. (2011b)]. The internal mechanisms leading to
the perception of each DoA by listeners have been compared and quantified:
impact of cepstral adaptation, of prosody, of phonetic transcription and of
the complete adaptation technique. All these effects outperformed the base-
line system, in which a straightforward phone-independent constant ratio
was applied to pitch and phone durations to sound like real HPO and HPR
speech. It was shown that adapting the cepstrum has a higher impact on the
rendering of the DoA than adapting the phonetic transcriptions. Moreover,
adapting prosody alone, without cepstrum adaptation, highly degrades the
perception of the DoA. We finally highlighted the importance of having a
Natural Language Processor able to create automatically realistic HPO and
HPR transcriptions.

As a complement to this latter study, the following sections focus on
intelligibility (Section 5.2) and multi-dimension (Section 5.3) assessment of
the speech synthesizers described in Section 5.1.

5.1. Method

Five HMM-based speech synthesizers are implemented following the same
procedure as in Section 4.3. As a reminder, the NEU full data model was
adapted using the entire HPO and HPR training sets, in order to remove
the effect of the number of adaptation sentences from our results. The five
synthesizers are created using interpolation ratios ranging from -1 (HPO) to
+1 (HPR), including 0 (NEU), with a 0.5 step: -0.5 and +0.5 correspond to
models right between the NEU full data model and respectively, the adapted
HPO model, or the adapted HPR model. The intelligibility of these five
synthesizers (-1, -0.5, 0, +0.5, +1) will be studied in Section 5.2, while a
general assessment will be performed on the three major synthesizers (-1, 0,
+1) in Section 5.3.

5.2. Semantically Unpredictable Sentences Test

In order to evaluate the intelligibility of a voice, the Semantically Un-
predictable Sentences (SUS) test was performed on speech degraded alterna-
tively by an additive or a convolutive noise. The advantage of such sentences

27



is that they are unpredictable, meaning that listeners cannot determine a
word in the sentence by the meaning of the whole utterance or the context
within the sentence.

5.2.1. Building the SUS Corpus

The same corpus as the one built in [de Mareüil et al. (2006)] was used in
our experiments. This corpus is part of the ELRA package (ELRA-E0023).
Basically, 288 semantically unpredictable sentences were generated following
4 syntactic structures containing 4 target words (nouns, verbs or adjectives,
here written with a capital initial letter):

• adverb det. Noun1 Verb-t-pron. det. Noun2 Adjective?

• determiner Noun1 Adjective Verb determiner Noun2.

• det. Noun1 Verb1 determiner Noun2 qui (that) Verb2.

• determiner Noun1 Verb preposition determiner Noun2.

Structure 4 originally proposed by [Benôıt (1990)] was not kept, because
it only contained 3 target words instead of 4. For more details about the
generation of this corpus, the reader is referred to [de Mareüil et al. (2006)].

5.2.2. Procedure

Nineteen listeners, mainly naive, participated to this evaluation. They
were asked to listen to 40 SUS, randomly chosen from the SUS corpus built
in the previous paragraph. The SUS were played one at a time. For each of
them, listeners were asked to write down what they heard. During the test,
they were allowed to listen to each SUS at most two times. They were of
course not allowed to come back to previous sentences after validating their
decision.

The SUS were synthesized using the five synthesizers described in Section
5.1. Two types of degradation were then applied to the synthesized SUS:
additive noise and reverberation.

For simulating the noisy environment, a car noise was added to the origi-
nal speech waveform at two Signal-to-Noise Ratios (SNRs): -5dB and -15dB.
The car noise signal was taken from the Noisex-922 database, and was added

2http://www.speech.cs.cmu.edu/comp.speech/Section1/Data/noisex.html
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so as to control the overall SNR without silence removal. Since the spec-
tral energy of the car noise is mainly concentrated in the low frequencies
(<400Hz), the formant structure of speech was only poorly altered, and voices
remained somehow understandable even for SNR values as low as -15dB.

When the speech signal s(n) is produced in a reverberant environment,
the observation x(n) at the microphone is:

x(n) = h(n) ∗ s(n), (2)

where h(n) is the L-tap Room Impulse Response (RIR) of the acoustic chan-
nel between the source and the microphone. RIRs are characterized by the
value T60, defined as the time for the amplitude of the RIR to decay to -60dB
of its initial value. In order to produce reverberant speech, a room measuring
3x4x5 m with two levels of reverberation (T60 of 100 and 300ms) was sim-
ulated using the source-image method [Allen and Berkley (1979)], and the
simulated impulse responses convolved with original speech signals.

The word level recognition accuracy is used as performance metric for the
SUS test. In order to cope with orthographic mistakes, this accuracy was
computed by counting manually the number of erroneous phonemes for each
word written by the listeners, in comparison with the correct word. The same
procedure was also applied for the accuracies at the sentence level. However,
they are not displayed on Figure 9 for the sake of conciseness, but can be
found in [Picart et al. (2012)]. A strong correlation was noted between the
recognition accuracy at the sentence and word levels.

5.2.3. Results

The mean recognition accuracies at the word level (for each DoA, for
each type and level of perturbation) are shown in Figure 9. The higher the
score, the better the synthesizer intelligibility as it leads to a higher word
recognition.

Interestingly, it is observed that accuracy generally increases with DoA.
For example, in the strongest reverberation, the word recognition rate in-
creases from around 48% for HPO speech, to 83% in HPR (i.e. an absolute
gain of 35%). It is also worth noting that in the presence of car noise, there
is no need to over-articulate: using values of 0.5 or 1 for the DoA leads to
almost exactly the same intelligibility performance. This conclusion however
does not hold in a reverberant environment. Comparing the effect of the
perturbation on the message understandability, it turns out that the most
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Figure 9: SUS Test - Mean word recognition accuracies [%], together with their 95%
confidence intervals.

reverberant condition clearly leads to the highest degradation. In HPR, in-
creasing the level of noise from -5dB to -15dB SNR results in a reduction of
the word recognition rate of around 7%. Finally, it is noticed that, on aver-
age, the weakest reverberation is the less adverse condition, with recognition
rates ranging from 75% to 96% when increasing the DoA. These latter results
are curiously observed to be about 9% better than in a car noise with -15dB
SNR, whatever the DoA.

5.3. Absolute Category Rating Test

Finally, an Absolute Category Rating (ACR) test was conducted in order
to assess several dimensions of the generated speech. As in [de Mareüil et al.
(2006)], the Mean Opinion Score (MOS) was complemented with six other
categories: comprehension, pleasantness, non-monotony, naturalness, fluidity
and pronunciation.

5.3.1. Procedure

Seventeen listeners, mainly naive, participated to this evaluation. They
were asked to listen to 18 meaningful sentences, randomly chosen amongst
the held-out set of the database (used neither for training nor for adaptation).
The sentences were played one at a time. For each of them, listeners were
asked to rate according to the 7 aspects cited above (for the detailed questions
list, see [de Mareüil et al. (2006)]). Listeners were given 7 continuous scales
(one for each question to answer) ranging from 1 to 5. These scales were
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extended one point further on both sides (ranging therefore from 0 to 6)
in order to prevent border effects. The sentences corresponded either to the
original speech or to the synthesized speech with a variable DoA (NEU, HPO
or HPR). We used the same listening protocol as in Section 4.1.3.

5.3.2. Results

Results are shown in Figure 10. In all cases, original speech is preferred to
synthetic speech. The MOS test shows that original NEU speech is preferred
to HPO and HPR speech, while synthetic NEU and HPR speech are almost
equivalent, leaving synthetic HPO speech slightly below. The comprehension
test points out that NEU and HPR speech are clearly more understandable
than HPO speech, both on the original and synthetic side. Differences of com-
prehension between original and synthesized speech are interestingly rather
weak. The pleasantness test indicates a preference of the listeners for orig-
inal NEU speech, followed by HPR and HPO speech, while all the types of
synthetic speech are equivalently preferred. Despite the HMM modeling, the
intonation and dynamics of the voice is well reproduced at synthesis time,
as illustrated with the non-monotony test. A major problem with HMM-
based speech synthesis is the naturalness of the generated speech compared
to the original speech. This is a known problem related in many studies.
The naturalness test underlines again this conclusion. The fluidity test has
an “inverse” tendency compared to other tests. Indeed HPO speech has a
higher score than the others. This is due to the fact that HPO speech is
characterized by a lower number of breaks and glottal stops, shorter phone
durations and higher speech rate (as proven in Section 3.2). All these ef-
fects lead to an impression of fluidity in speech, while the opposite tendency
is observed in HPR speech. Finally, the pronunciation test correlates with
the comprehension test in the sense that the more pronunciation problems
are found, the harder the understandability of the message. Albeit NEU and
HPR speech are perceived equivalently in this ACR test from the comprehen-
sion and pronunciation points of view, the SUS test proved that HPR speech
was much more intelligible than NEU speech in adverse environments.

6. Conclusions

This paper focused on the analysis and synthesis of hypo (HPO) and
hyperarticulated (HPR) speech, compared to neutral (NEU) speech. Inte-
grating a continuous variable degree of articulation (DoA) within HMM-
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Figure 10: ACR Test - Mean scores together with their 95% confidence intervals.

based speech synthesis is of interest in several applications: expressive voice
conversion in embedded systems or for video games, reading speed control
for visually impaired people, improving intelligibility performance in adverse
environments (e.g. GPS voice inside a moving car, train information in sta-
tions), etc. This is also necessary in a more realistic system able to mimic
more accurately humans who constantly adapt their speaking style to the
communication context.

For this, the paper was divided into three main parts. In the first one,
we led a study on the speech modifications occuring when the speaker varies
his DoA. At the acoustic level, it was shown that both the vocal tract and
glottal contributions are affected. More precisely, an increase of articulation
is significantly reflected by an augmentation of the vocalic space in the F1-
F2 plane, by higher F0 values, by a stronger harmonicity in speech and by a
glottal flow containing more energy in the high frequencies. At the phonetic
level, the main variations concern glottal stops, breaks and the phoneme
Schwa /@/. Finally, although the speaking rate significantly increases when
the DoA decreases, it turns out that the proportion between speech and
pausing periods remains constant.

The second part of the paper aimed at developing a HMM-based speech
synthesis system incorporating a continuous tuning of the DoA. This goal was
subdivided into three tasks: i) building a HMM-based synthesizer for each
DoA using the full specific datasets; ii) for HPO and HPR speech, being able
to create a HMM-based synthesizer by adaptation of the NEU synthesizer
and using a limited amount of data; iii) being able to continuously control
the DoA by interpolating and extrapolating existing models. Both objective
and subjective tests were used to validate each of these three tasks. Our
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conclusions showed that: i) HPR speech is synthesized with a better quality;
ii) about 7 minutes of HPO or 13 minutes of HPR speech are required to
adapt correctly cepstral features, while only half of it can be used for pitch
and duration adaptation; iii) the continuous modification of articulatory
efforts is correctly perceived by listeners, while keeping an overall quality
comparable to what is produced by the NEU synthesizer.

In the third and last part, we have performed a comprehensive perceptual
evaluation of the resulting flexible speech synthesizer. First, a Semantically
Unpredictable Sentences (SUS) test revealed that playing on the articula-
tion significantly improves the intelligibility of the synthesizer in adverse
environments (both noisy and reverberant conditions). Secondly, an Abso-
lute Category Rating (ACR) test was used to assess the synthesizer through
various voice dimensions. Although a loss is noticed between natural and
synthesized speech regarding its naturalness and segmental quality, several
perceptual features like comprehension, non-monotony and pronunciation are
relatively well preserved after statistical and parametric modeling.

The study described in this paper focused on the variations of the DoA
produced by a French male speaker. Nonetheless, the approach we adopted
and the methods we have developed can be transposed to a variety of speak-
ing styles in various languages. In this way, our ongoing research activities
encompass the possibility of controlling the DoA for any French speaker
(male or female) for whom no recordings of HPR or HPO speech are avail-
able. Once this will be done, our goal will be to transpose this flexibility
to other languages, which will probably raise some phonetic issues. Finally,
our last target will be the application of these methods to other types of
expressivity in speech (e.g. emotional speech with happy and sad data), or
even to modalities other than speech (e.g. expressive walk or singing voice
synthesis).
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