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Abstract. Inverting the speech polarity, which is dependent upon the
recording setup, may seriously degrade the performance of various speech
processing applications. Therefore, its automatic detection from the speech
signal is thus required as a preliminary step for ensuring such techniques
are well-behaved. In this paper a new method for polarity detection is
proposed. This new approach relies on oscillating statistical moments
which exhibit the property of having a phase shift which depends on the
speech polarity. This dependency arises from the higher-order statistics
in the moment calculation. The proposed approach is compared to state-
of-the-art techniques on 10 speech corpora. Their performance in clean
conditions as well as their robustness to additive noise are discussed.
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1 Introduction

The polarity of speech may affect the performance of several speech processing
applications. This polarity arises from the asymmetric glottal waveform exciting
the vocal tract resonances. Indeed, the source excitation signal produced by the
vocal folds generally presents, during the production of voiced sounds, a clear
discontinuity occuring at the Glottal Closure Instant (GCI, [1]). This discontinu-
ity is reflected in the glottal flow derivative by a peak delimitating the boundary
between the glottal open phase and return phase. Polarity is said to be positive
if this peak at the GCI is negative, like in the usual representation of the glottal
flow derivative, such as in the Liljencrant-Fant (LF) model [2]. In the opposite
case, polarity is negative.

When speech is recorded by a microphone, an inversion of the electrical
connections can cause the inversion of the speech polarity. The human ear is
known to be insensitive to such a polarity change [3]. However, this may have a
dramatic detrimental effect on the performance of various techniques of speech
processing. In unit selection based speech synthesis [4], speech is generated by
the concatenation of segments selected from a large corpus. This corpus may
have been built through various sessions, possibly using different devices, and
may therefore consist of speech segments with different polarities. The concate-
nation of two speech units with different polarity results in a phase discontinuity,



which may significantly degrade the perceptual quality when occuring in voiced
segments of sufficient energy [3]. There are also several synthesis techniques us-
ing pitch-synchronous overlap-add (PSOLA) which suffer from the same polarity
sensitivity. This is the case of the well-known Time-Domain PSOLA (TDPSOLA,
[5]) method for pitch modification.

Besides, efficient techniques of glottal analysis require processing of pitch-
synchronous speech frames. For example, the three best approaches considered
in [1] for the automatic detection of GCI locations, are dependent upon the
speech polarity. An error on its determination results in a severe impact on their
reliability and accuracy performance. There are also some methods of glottal
flow estimation and for its parameterization in the time domain which assume
a positive speech polarity [6].

This paper proposes a new approach for the automatic detection of speech
polarity which is based on the phase shift between two oscillating signals derived
from the speech waveform. Two ways are suggested to obtain these two oscillating
statistical moments. One uses non-linearity, and the other exploits higher-order
statistics. In both cases, one oscillating signal is computed with an odd non-
linearity or statistics order (and is dependent on the polarity), while the second
oscillating signal is calculated for an even non-linearity or statistics order (and
is independent on the polarity). These two signals are shown to evolve at the
local fundamental frequency and consequently have a phase shift which depends
on the speech polarity.

This paper is structured as follows. Section 2 gives a brief review on the exist-
ing techniques for speech polarity detection. The proposed approach is detailed
in Section 3. A comprehensive evaluation of these methods is given in Section
4, providing an objective comparison on several large databases both in clean
conditions and noisy environments. Finally Section 5 concludes the paper.

2 Existing Methods

Very few studies have addressed the problem of speech polarity detection. We
here briefly present three state-of-the-art techniques for achieving this purpose.

2.1 Gradient of the Spurious Glottal Waveforms (GSGW)

The GSGW method [7] focuses on the analysis of the glottal waveform estimated
via a framework derived from the Iterative Adaptive Inverse Filtering (IAIF, [8])
technique. This latter signal should present a discontinuity at the GCI whose
sign depends on the speech polarity. GSGW therefore uses a criterion based on
a sharp gradient of the spurious glottal waveform near the GCI [7]. Relying on
this criterion, a decision is taken for each glottal cycle and the final polarity for
the speech file is taken via majority decision.



2.2 Phase Cut (PC)

The idea of the PC technique [9] is to search for the position where the two first
harmonics are in phase. Since the slopes are related by a factor 2, the intersected
phase value φcut is:

φcut = 2 · φ1 − φ2, (1)

where φ1 and φ2 denote the phase for the first and second harmonics at the
considered analysis time. Assuming a minimal effect of the vocal tract on the
phase response at such frequencies, φcut closer to 0 (respectively π) implies a
positive (respectively negative) peak in the excitation [9]. PC then takes a single
decision via a majority strategy over all its voiced frames.

2.3 Relative Phase Shift (RPS)

The RPS approach [9] takes advantage of the fact that, for positive peaks in
the glottal excitation, phase increments between harmonics are approximately
due to the vocal tract contribution. The technique makes use of Relative Phase
Shifts (RPS’s), denoted θ(k) and defined as:

θ(k) = φk − k · φ1, (2)

where φk is the instantaneous phase of the kth harmonic. For a positive peak
in the excitation, the evolution of RPS’s over the frequency is smooth. Such a
smooth structure is shown to be sensitive to a polarity inversion [9]. For this,
RPS considers harmonics up to 3kHz, and the final polarity corresponds to the
most represented decisions among all voiced frames.

3 Oscillating Moments-based Polarity Detection
(OMPD)

In [1], we proposed a method of Glottal Closure Instant (GCI) determination
which relied on a mean-based signal. This latter signal had the property of
oscillating at the local fundamental frequency and allowed good performance in
terms of reliability (i.e. leading to few misses or false alarms). It was observed
in [1] for all speakers and for speech signals of positive polarity that actual
GCI positions (extracted from ElectroGlottoGraphic (EGG) recordings) were
located in the timespan of duration 35% the local pitch period and following the
minimum of the mean-based signal. In parallel, it is known that GCIs can be
determined using the center of gravity of the speech signal [10]. More precisely,
the local energy goes by a maximum in the vicinity of the GCI, which is the
particular instant of significant excitation of the vocal tract.

These concepts are illustrated in Figure 1 for a segment of voiced speech
uttered by a male speaker. The time-aligned differenced EGG exhibits clear dis-
continuities at the GCI locations. The observation made in [1] about the almost



constant relative position of GCIs within the cycles of the mean-based signal
(which depends upon the polarity of the speech signal) is here corroborated.
Finally, it clearly turns out that the variance-based signal (which is by definition
polarity-independent) displays local maxima around the GCI positions. This
observation shows clear evidence that these signals convey relevant information
about the polarity of speech signal.
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Fig. 1. Motivation for the use of oscillating moments for speech polarity detection.
The synchronized differenced EGG exhibits discontinuities at the GCI locations. The
relative position of these instants within cycles of the mean-based (polarity-dependent)
and variance-based (polarity-independent) signals is shown to be rather stable.

The key idea of the proposed approach for polarity detection is then to use
two of such oscillating signals whose phase shift is dependent on the speech
polarity. For this, we define the oscillating moment yp1,p2

(t), depending upon p1
and p2 which respectively are the statistical and non-linearity orders, as:

yp1,p2
(t) = µp1

(xp2,t) = E[(xp2,t)
p1 ] (3)

where µp1
(X) is the pth

1
statistical moment of the random variable X, and

E[X] is its mathematical expectation.
The signal xp2,t is defined as:

xp2,t(n) = sp2(n) · wt(n) (4)

where s(n) is the speech signal and wt(n) is a Blackman window centered at
time t:



wt(n) = w(n− t) (5)

As in [1], the window length is recommended to be proportional to the mean
period T0,mean of the considered voice, so that yp1,p2

(t) is almost a sinusoid
oscillating at the local fundamental frequency. For (p1, p2) = (1, 1), the oscillat-
ing moment is the mean-based signal used in [1] for which the window length
is 1.75 · T0,mean. For oscillating moments of higher orders, we observed that a
larger window is required for a better resolution. In the rest of this paper, we
used a window length of 2.5 · T0,mean for higher orders (which in our analysis
did not exceed 4). Besides, to avoid a low-frequency drift in yp1,p2

(t), this signal
is high-passed with a cut-off frequency of 40 Hz.

Figure 2 illustrates for a given segment of voiced speech the evolution of four
oscillating moments yp1,p2

(t) respectively for (p1, p2) = {(1, 1); (2, 1); (3, 1); (4, 1)}.
It can be noticed that all oscillating moments are quasi-sinusoids evolving at the
local fundamental frequency and whose relative phase shift depends upon the or-
der p1. Note that a similar conclusion can be drawn when inspecting the effect of
p2. The principle of the proposed method is that yp1,p2

(t) is polarity-dependent
if p1 · p2 is odd (i.e. the oscillating moment is inverted with a polarity change),
and is polarity-independent if p1 · p2 is even. Indeed, as it can be observed from
Equations 3 to 5, if p1 and p2 are both odd, the oscillating moment yp1,p2

(t) is
an odd function of the input speech signal x(t), meaning that an inversion of
x(t) will invert its oscillating moment. On the other hand, the introduction of
an even order either in p1 and/or p2 makes the oscillating moment yp1,p2

(t) an
even function of x(t) and the result of this operation is therefore independent of
its polarity.

In the following tests, for the sake of simplicity, only the oscillating moments
y1,1(t) and y1,2(t) (or y2,1(t)) are considered. Figure 3 shows, for the several
speakers that will be analyzed in Section 4, how the distribution of the phase
shift between y1,1(t) and y1,2(t) is affected by an inversion of polarity. Note
that these histograms were obtained at the frame level and that phase shifts are
expressed as a function of the local T0. Figure 3 suggests that fixing a threshold
around -0.12 could lead to an efficient determination of the speech polarity.

Our proposed method, called Oscillating Moment-based Polarity Detection
(OMPD), works as follows:

– Roughly estimate themean pitch value T0,mean (required for determining the
window length) and the voicing boundaries with an appropriate technique.

– Compute from the speech signal s(n) the oscillating moments y1,1(t) and
y1,2(t), as indicated by Equations 3 to 5.

– For each voiced frame, estimate the local pitch period T0 from y1,1(t) (or
equivalently from y1,2(t)) and compute the local phase shift between these
two signals. In this work, the phase shift between the signals is computed by
calculating the position of the maximum of their cross-correlation function
(which is their time shift) and by normalizing it to the local pitch period T0,
as indicated in [11].
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Fig. 2. Illustration of the oscillating moments. Top plot : the speech signal. Bottom
plot : the resulting oscillating moments with various values of p1 and for p2 = 1.

– Apply a majority decision over the voiced frames, a frame being with a
positive polarity if its phase shift is comprised between -0.12 and 0.38.

It is worth mentioning that an important advantage of OMPD, with regard
to the techniques described in Section 2, is that it just requires a rough estimate
of the mean pitch period (i.e. simply an approximate mean value of T0 used by
the speaker), and not an accurate determination of the complete pitch contour.
This also gives the method an advantage of performing in adverse conditions.

4 Experiments

In some speech processing applications, such as speech synthesis, utterances are
recorded in well controlled conditions. For such high-quality speech signals, the
performance of speech polarity detection techniques is studied in Section 4.2.
For many other types of speech processing systems however, there is no other
choice than to capture the speech signal in a real world environment, where noise
may dramatically degrade its quality. The goal of Section 4.3 is to evaluate how
speech polarity detection methods are affected by additive noise. The general
experimental protocol is presented in Section 4.1.
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Fig. 3. Distribution of the phase shift (in local pitch period) between y1,1(t) and y1,2(t)
for a negative and positive polarity.

4.1 Experimental Protocol

The experimental evaluation is carried out on 10 speech corpora. Several voices
are taken from the CMU ARCTIC database [12], which was designed for the
purpose of speech synthesis: AWB (Scottish male), BDL (US male), CLB (US
female), JMK (Canadian male), KSP (Indian male), RMS (US male) and SLT
(US female). The Berlin database [13] consists of emotional speech (7 emotions:
happy, angry, anxious, fearful, bored, disgusted and neutral) from 10 speakers
(5F - 5M) and consists of 535 sentences altogether. The two speakers RL (Scot-
tish male) and SB (Scottish female) from the CSTR database [14] are also used
for the evaluation. The specificities of the databases used for the evaluation are
summarized in Table 1.

For experiments in noisy environments, two types of noise were artificially
added to the speech signal: White Gaussian Noise (WGN) and babble noise (also
known as cocktail party noise). Noise was added at various Signal-to-Noise Ratios
(SNRs), varying from 80 dB (clean conditions) to 10 dB (noisy environments).
The noise signals were taken from the Noisex-92 database [15], and were added
so as to control the segmental SNR without silence removal. For these latter
experiments, a quarter from each of the 10 speech corpora was used per noise
configuration (except for the CSTR database which contains less data, and where
the whole dataset was used). This way of proceeding still ensures an important
amount of data per noisy condition, so that it does not affect the conclusions
that will be drawn in the following.

For all experiments, the Summation of Residual Harmonics (SRH) algorithm
was used for both estimating the fundamental frequency contour and detecting



Database Type of speaker(s) Amount of data

AWB Scottish male 83 min.

BDL US male 56 min.

Berlin 5M-5F, emotional speech 25 min.

CLB US female 64 min.

JMK Canadian male 58 min.

KSP Indian male 37 min.

RL Scottish male 2.5 min.

RMS US male 66 min.

SB Scottish female 3 min.

SLT US female 56 min.
Table 1. Description of the databases used for the evaluation.

the voiced-unvoiced segment boundaries, as this gave the most robust results of
pitch tracking in [16].

4.2 Results in Clean Conditions

Results of polarity detection in clean conditions using the four techniques de-
scribed in the previous sections are reported in Table 2. It can be noticed that
GSGW gives in general a lower performance, except for speaker SB where it out-
performs other approaches. PC generally achieves high detection rates, except
for speakers SB and SLT. Although RPS leads to a perfect polarity determina-
tion in 7 out of the 10 corpora, it may for some voices (KSP and SB) be clearly
outperformed by other techniques. As for the proposed OMPD method, it works
perfectly for 8 of the 10 databases and gives an acceptable performance for the
two remaining datasets. On average, over the 10 speech corpora, it turns out
that OMPD clearly carries out the best results with a total error rate of 0.15%,
against 0.64% for PC, 0.98% for RPS and 3.59% for GSGW.

Two remarks can be emphasized at this point. It turns out from the in-
spection of Table 2 that two datasets show a comparatively higher difficulty:
the Berlin (especially with the GSGW technique) and SB databases. SB is a
particularly breathy voice, for which the glottal production certainly involves a
higher amount of aspiration noise than for other speakers. This can explain why
no method gives a perfect detection on the SB dataset, although it only con-
sists of 50 utterances. The emotive Berlin corpus also contains breathier voices,
making the polarity determination more difficult. In addition, we observed that
for some of its speakers, GCIs are much less marked (inspecting both glottal
source estimates and residual signals) than for other voices, in the sense that the
discontinuity in the excitation around the GCI is much less pronounced. We ob-
served that for such voices the automatic polarity detection is less evident, and
this particularly using the GSGW approach. A more complete study comparing
the various techniques on speech with different voice qualities is necessary to
confirm these observations and provide further insight of why these techniques
fail in certain cases.



GSGW PC RPS OMPD

Speaker OK KO Acc. (%) OK KO Acc. (%) OK KO Acc. (%) OK KO Acc. (%)

AWB 1134 4 99.64 1138 0 100 1138 0 100 1138 0 100

BDL 1112 19 98.32 1131 0 100 1131 0 100 1131 0 100

Berlin 356 179 66.54 528 7 98.69 535 0 100 525 10 98.13

CLB 1131 1 99.91 1132 0 100 1132 0 100 1132 0 100

JMK 1096 18 98.38 1109 5 99.55 1114 0 100 1114 0 100

KSP 1103 29 97.43 1132 0 100 1059 73 93.55 1132 0 100

RL 50 0 100 50 0 100 50 0 100 50 0 100

RMS 1082 50 95.58 1132 0 100 1129 3 99.73 1132 0 100

SB 49 1 98 37 13 74 42 8 84 47 3 94

SLT 1125 6 99.38 1101 30 97.35 1131 0 100 1131 0 100

TOTAL 8238 307 96.41 8490 55 99.36 8461 84 99.02 8532 13 99.85

Table 2. Results of polarity detection in clean conditions for 10 speech corpora using
the four techniques. The number of sentences whose polarity is correctly (OK) or
incorrectly (KO) determined are indicated, as well as the detection accuracy (in %).

4.3 Robustness to an Additive Noise

The influence of the noise level and type on the polarity error rate is displayed
in Figure 4. In the presence of White Gaussian Noise (WGN), it can be observed
that OMPD remains the best technique at any SNR value. With the increase of
the noise level, the performance of RPS stays almost unchanged while PC has
a slight degradation. The most affected technique with a WGN is GSGW, with
an absolute increase of its error rate of 2% at 10dB SNR (compared to clean
conditions).

In babble noise, this degradation is even stronger. This is especially true
for GSGW whose error rate reaches 41% in the noisiest conditions. Although
the proposed OMPD method remains the best approach up to 20dB SNR, it is
clearly outperformed in more severe environments. In this latter case, the best
techniques are PC and RPS whose results are almost insensitive to an additive
noise.

Regarding the performance of the proposed OMPD technique specifically,
it is seen that it is relatively insensitive in the presence of a WGN, while it is
severely affected in babble noise below 20dB SNR. This can be understood by the
fact that the statistical moments of a WGN at the scale of the window length
considered in this paper (between 1.75 and 2.5 · T0,mean) are almost constant
values. As a consequence, the effect of WGN on the calculation of the statistical
moments of degraded speech is almost negligible until very low SNR values.
On the other hand, babble noise has a much more important impact on the
low-frequency contents. When SNR is decreasing, the moment calculation is
perturbed and its effect cannot be neglected anymore. In the most severe scenario
(babble noise at 10dB SNR), we even observed that the resulting moments are, in
some cases, even not quasi-sinusoids anymore, which explains why the proposed
OMPD performance is affected so drastically.



10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

Signal−to−Noise Ratio (dB)

E
rr

or
 r

at
e 

(%
)

 

 

GSGW
PC
RPS
OMPD

10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

Signal−to−Noise Ratio (dB)

E
rr

or
 r

at
e 

(%
)

 

 

GSGW
PC
RPS
OMPD

Fig. 4. Evolution the polarity determination error rate as a function of the Signal-
to-Noise ratio. Left panel : with a white Gaussian Noise, Right panel : with a babble
noise.

5 Conclusion

This paper investigated the use of higher-order statistics for the automatic detec-
tion of speech polarity. The proposed technique is based on the observation that
the proposed statistical moments oscillate at the local fundamental frequency
and have a phase shift which is dependent upon the speech polarity. The result-
ing method is shown through an objective evaluation on several large corpora
to outperform existing approaches for polarity detection. On these databases,
it reaches in clean conditions an average error rate of 0.15% against 0.64% for
the best state-of-the-art technique. Besides the proposed method only requires a
rough estimate of the mean pitch period for the considered voice. Regarding the
robustness to additive noise, the proposed approach gave the best results in all
conditions, except in the most severe environment with a babble noise at 10dB
SNR.
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