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Abstract

Glottal closure instant (GCI) estimation is a well-studied topic

that plays a critical role in several speech processing applica-

tions. Many GCI estimation algorithms have been proposed

in the literature and shown to provide excellent results on the

speech signal. Nonetheless the efficiency of these algorithms

for the analysis of the singing voice is still unknown. The goal

of this paper is to assess the performance of existing GCI esti-

mation methods on the singing voice with a quantitative com-

parison. A second goal is to provide a starting point for the

adaptation of these algorithms to the singing voice by identify-

ing weaknesses and strengths under different conditions. This

study is carried out on a large database of singing sounds with

synchronous electroglottography (EGG) recordings, containing

a variety of singer categories and singing techniques. The

evaluated algorithms are Dynamic Programming Phase Slope

Algorithm (DYPSA), Hilbert Envelope-based detection (HE),

Speech Event Detection using the Residual Excitation And a

Mean-based Signal (SEDREAMS), Yet Another GCI Algo-

rithm (YAGA) and Zero Frequency Resonator-based method

(ZFR). The algorithms are evaluated in terms of both reliability

and accuracy, over different singing categories, laryngeal mech-

anisms, and voice qualities. Additionally, the robustness of the

algorithms to reverberation is analyzed.

Index Terms: singing analysis/synthesis, GCI estimation, glot-

tal closure instant

1. Introduction

The field of speech processing has seen a leaping development

over the last decades, creating a variety of techniques for the

analysis, modeling and synthesis of speech signals. The related

field of singing processing has also developed, but the extent

reached by the breadth and depth of the speech processing tech-

niques has not been directly reflected in it. While both singing

and speech is achieved by the same vocal apparatus, applying

the speech approaches to singing may not be straightforward

[1]. Some key differences of singing from speech are the wider

pitch range, more controlled pitch variations, greater dynamic

range and prolonged voiced sounds. Source-filter interaction

also has more of an impact on singing and cannot be neglected

as easily. Additionally, the large variety of singing techniques

and phenomena has made it more difficult to formalize and gen-

eralize the singing voice.

As a consequence, existing singing synthesizers have lim-

ited their scope, generally focusing on one singer category or

one singing technique. These limitations create a wide gap

between the synthesizers and the expressive range of human

singers, as well as the performative requirements of musicians

wishing to use these tools.

Among existing systems, Harmonic plus Noise Modeling

(HNM) has been used extensively [2]. In the SMS [3] and

Vocaloid [4] systems, a degree of control is obtained over a unit

concatenation technique by integrating HNM [5], though the

synthesis results are still confined in singing space to the range

of the pre-recorded samples. In the CHANT [6] and FOF [7]

systems, rule-based descriptions characterizing some operatic

voices are integrated, yielding remarkable results for soprano

voices. Meron obtained convincing results for lower registers

of singing by applying the non-uniform unit selection technique

to singing synthesis [8]. Similar strategies have been applied to

formant synthesis, articulatory synthesis [9] and HMM-based

synthesis methods [10], but the limitations in vocal expression

range have been quite similarly limited.

In this study, we continue our efforts to establish a founda-

tion for an analysis framework targeting a wide range of singing

techniques and singer categories, with the long-term aim of a

wide-range synthesizer. We build upon our previous work on

pitch analysis for singing [11]. The Glottal Closure Instants

(GCIs) are significant excitations in the voice and many analy-

sis, synthesis, modeling and decomposition algorithms rely on

the accurate estimation of their location, including a variety of

methods that employ Time-Domain Pitch-Synchronous Overlap

Add (TD-PSOLA) analysis/resynthesis [12][13], mixed-phase

decomposition [14] and Deterministic Plus Stochastic Model

(DSM) [15]. While the behaviors of GCI estimation techniques

are very well studied and understood on speech signals [16],

they are still unkown on the singing voice. The aim of this study

is to investigate the performance of existing GCI estimation

techniques on a wide variety of singing signals and to identify

strengths and weaknesses for particular conditions. This inves-

tigation is also intended to serve as a starting point for possible

contributions to the field by identifying challenges to overcome.

The structure of the paper is as follows. Section 2 briefly

describes the GCI estimators used in this study. Section 3

presents the singing database and details the experimental pro-

tocol, including establishment of the ground truth and defini-

tions of the error metrics used. The results of the experiments

in different groups and under different conditions are presented

in detail in Section 4, along with their discussion. Lastly, Sec-

tion 5 draws the conclusions of the study.

2. Methods for GCI Estimation

This section gives a brief overview of the state-of-the-art GCI

estimation methods compared in this study:



• The Dynamic Programming Phase Slope Algorithm

(DYPSA) [17] estimates GCIs by identifying peaks in

the linear prediction (LP) [18] residual signal of speech

(obtained by removing an auto-regressive model of the

spectral envelope and whitening the resultant signal).

It first generates GCI candidates using the group delay

function of the LP residual signal, then selects the subset

of GCI estimates using N-best dynamic programming.

• There are several methods in the literature that employ

the Hilbert envelope (HE) [19]. In this study, a method

based on the HE of the LP residual signal is evaluated.

The HE exhibits large positive peaks when the residue

presents discontinuities. The method employs a Center

of Gravity (CoG)-based signal in conjunction with the

HE to make GCI estimates as described in [16].

• Speech Event Detection using the Residual Excitation

And a Mean-based Signal (SEDREAMS) [20] is a re-

cently proposed algorithm that first determines intervals

of GCI presence using a mean-based signal (obtained by

calculating the mean of a sliding window over the speech

signal), then refines the GCI locations using the LP resid-

ual.

• Yet Another GCI Algorithm (YAGA) [21], similar to

DYPSA, is an LP-based approach that uses N-best dy-

namic programming to select from GCI candidates. The

GCI candidates are generated from an estimate of the

voice source signal (time-derivative of glottal volume

flow rate) instead of the residual signal.

• The Zero Frequency Resonator (ZFR)-based technique

is rooted in the observation that the impulsive excitation

at GCIs have an effect across all frequencies [22]. This

method uses zero frequency resonators to minimize the

influence of vocal tract resonances and isolate the exci-

tation pulses.

Since several of these GCI estimation techniques are sensi-

tive to an inversion of the signal, the polarity was detected and

corrected using the RESKEW method [23].

3. Experimental Protocol

3.1. Database

For this study, the scope was constrained to vowels. Sam-

ples with verified reference pitch trajectories from our previ-

ous study were used [11]. Samples from different singers were

taken from the LYRICS database recorded by [24, 25], for a

total of 13 trained singers. The selection consisted of 7 bass-

baritones (B1 to B7), 3 countertenors (CT1 to CT3), and 3 so-

pranos (S1 to S3). The recording sessions took place in a sound-

proof booth. Acoustic and electroglottographic signals were

recorded simultaneously on the two channels of a DAT recorder.

The acoustic signal was recorded using a condenser microphone

(Brüel & Kjær 4165) placed 50 cm from the singer’s mouth, a

preamplifier (Brüel & Kjær 2669), and a conditioning amplifier

(Brüel & Kjær NEXUS 2690). The electroglottographic sig-

nal was recorded using a two-channel electroglottograph (EG2,

[26]). The selected samples contain a variety of singing tasks,

such as sustained vowels, crescendos-decrescendos and arpeg-

gios, and ascending and descending glissandos. Whenever pos-

sible, the singers were asked to sing in both laryngeal mech-

anisms M1 and M2 [27, 28]. Laryngeal mechanisms M1 and

M2 are two biomechanical configurations of the laryngeal vi-

brator commonly used in speech and singing by both male and

females. Basses and baritones mainly sing in M1. They may

use M2 to sing high pitches. Countertenors commonly sing in

M2. They may use M1 for artistic purposes, so their singing

technique requires the ability to sing with similar voice qual-

ities in both laryngeal mechanisms. Sopranos mainly sing in

M2. They can choose to sing in M1 in the low to medium part

of their tessitura.

3.2. Ground Truth

The ground truth is based on the differentiated EGG signal

(dEGG). GCI marking was done on the dEGG signals by sim-

ple peak detection above an empirically-determined amplitude.

This method yielded very accurate results. The same attempt

was also made with the SIGMA [29] algorithm, but the results

were much less accurate. The reliability of the ground truth

was assessed by visual comparisons between the dEGG signals

and the GCI marked positions. Due to time constraints, man-

ual correction of reference GCIs was not possible, but the errors

were manually counted. While errors of missing GCIs and false

alarms existed in these marks, a practical acceptance threshold

of 1% total error was set in order to strike a balance between

the reliability and the scope of the ground truth. The mean total

error across the 437 accepted singing samples is 0.14%, with

146 of them containing no errors.

3.3. Synchronization of EGG Recordings with Audio

Electroglottography is a non-invasive method for recording

vocal-fold contact area by placing two contact electrodes on

the singer’s neck. While practically providing the true posi-

tions of GCIs, the EGG signal needs to be time-aligned with

the audio signal, which is delayed by the duration of sound

propagation between glottis and external microphone. Accu-

racy of GCI estimation depends on the synchrony of both sig-

nals. In this study, time-alignment was done separately for each

individiual recording, since the mouth-to-microphone distance

can be highly variable, even inside the same corpus. For each

recording, a time delay between GCI estimates and nearest cor-

responding reference GCIs was calculated for all algorithms.

The time-alignment lag was then given by the mode of the col-

lection of all temporal distances. This method was employed

after previous synchronization attempts, which used the cross-

correlation of dEGG signals and LP residues, yielded highly

inaccurate results.

3.4. Error Metrics

A group of standard error metrics were used to evaluate the

performance of the algorithms both in reliability and accuracy

by comparing their GCI estimates to the time-aligned reference

GCIs. The first group, describing reliability, consists of:

• Identification Rate (IDR): the proportion of glottal cycles

for which a unique GCI is detected,

• Miss Rate (MR): the proportion of glottal cycles for

which no GCI is detected,

• False Alarm Rate (FAR): the proportion of glottal cycles

for which more than one GCI is detected.

For each correctly-detected GCI (i.e. satisfying the IDR

condition), a timing error is calculated.

The second group, describing accuracy, is derived from the

distribution of these timing errors:

• Identification Accuracy (IDA): the standard deviation of

the timing error distribution,



Table 1: Performance of GCI estimation algorithms by singer type and laryngeal mechanism

Singer Type Algorithm IDR (%) MR (%) FAR (%) IDA (ms)
Accuracy to

± 0.25 ms.(%)

Baritone

DYPSA

HE

SEDREAMS

YAGA

ZFR

98.67

97.41

97.19

91.46

29.63

0.85

1.57

0.81

0.59

0.14

0.47

1.02

2.00

7.95

70.23

0.19

0.26

0.33

0.22

0.48

67.31

10.83

51.38

73.31

1.10

Counter-Tenor

DYPSA

HE

SEDREAMS

YAGA

ZFR

87.83

89.41

96.86

94.84

72.34

11.17

8.10

1.04

3.12

1.20

0.99

2.49

2.11

2.04

26.46

0.22

0.28

0.32

0.20

0.30

76.98

30.12

61.93

84.99

7.07

Soprano

DYPSA

HE

SEDREAMS

YAGA

ZFR

64.30

77.47

95.09

89.52

75.30

35.50

21.85

3.37

9.68

2.36

0.20

0.68

1.54

0.80

22.34

0.31

0.35

0.34

0.33

0.42

65.29

42.70

62.46

59.42

15.75

Laryngeal Mechanism Algorithm IDR (%) MR (%) FAR (%) IDA (ms)
Accuracy to

± 0.25 ms. (%)

M1

DYPSA

HE

SEDREAMS

YAGA

ZFR

98.33

97.96

97.73

91.48

30.84

0.65

0.79

0.56

0.47

0.11

1.01

1.25

1.71

8.04

69.05

0.17

0.25

0.32

0.19

0.47

71.78

11.26

54.27

78.27

1.11

M2

DYPSA

HE

SEDREAMS

YAGA

ZFR

74.03

83.05

96.49

92.27

79.18

25.76

15.93

2.45

7.02

1.83

0.21

1.02

1.06

0.71

18.99

0.29

0.33

0.34

0.29

0.38

67.91

38.03

60.88

69.40

12.04

• Accuracy to ±0.25 ms: the proportion of detections for

which the timing error is smaller than a threshold of 0.25

ms in either direction.

It is worth noting for clarity that a high-accuracy algorithm

generates lower values for the former and higher values for the

latter metric. The threshold in the latter (±0.25 ms) is chosen

very small since techniques that rely on GCI locations are very

sensitive to errors therein.

4. Results

To examine the effect of different dimensions of singing, the

error metrics were calculated for several different subsets of the

database. The obtained results are presented in this section.

4.1. The Effect of Singer Type

As can be observed in Table 1 and Figure 1, SEDREAMS and

YAGA are the only algorithms that can be said to perform

reliably in a consistent manner across different singer types.

DYPSA and HE perform better for lower-pitch singers, and

a clear trend of decreasing reliability is apparent as pitch in-

creases. ZFR’s high false alarm rates prohibit any practical us-

age. Overall, SEDREAMS offers the best reliability with con-

sistency and lowest error rates. In terms of accuracy, none of

the algorithms reach the level of performance that would be ex-

pected in speech. YAGA performs the best for baritones and

counter-tenors, with DYPSA being a close second. For sopra-

nos, SEDREAMS surpasses YAGA in accuracy. Considering

the reliability and accuracy in conjunction, DYPSA and YAGA

are good choices for baritones, latter of which is also the best

choice for counter-tenors. Noting the low IDR of DYPSA for

sopranos, SEDREAMS is the most suitable in that group. Ad-

ditionally, for baritones, a trade-off between reliability and ac-

curacy observed when choosing between DYPSA and YAGA.

A point worth noting is that even the most accurate methods

do not perform nearly as well as they do on speech signals[16].

One of the reasons is that the discontinuities are less signifi-

cant in the LP residual or glottal source estimate of singing sig-

nals, especially for higher-pitch voices. A potential improve-

ment can be obtained by using an excitation signal that presents

discontinuities in a more pronounced way, such as [30]. An-

other possible explanation is the source-filter interactions that

are unaccounted for. All the techniques are based on the linear

source-filter assumption, which has proved to be a good first ap-

proximation in normal speech. In singing, however, the linear

source-filter theory is not as suitable, especially at high pitches.

LP analysis works at low pitches but fails to estimate accurate

inverse-filtered glottal flow at high pitches, which may account

for the observed degradation in reliability and accuracy as vocal

range gets higher.

4.2. The Effect of Laryngeal Mechanism

Similar trends as in singer types is observed for laryngeal mech-

anisms. In terms of reliability, SEDREAMS is the clear best

performer, with YAGA providing consistent results but being

outperformed by DYPSA and HE for M1. In accuracy, YAGA

provides the best results, with DYPSA being comparable. It is

worth noting that an overall accuracy increase is observed from
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Figure 2: Effect of singer type on accuracy to ±0.25 ms.

M1 to M2. This could be attributed to the fact that as pitch in-

creases, glottal cycles become shorter, and for the same level of

relative timing error, the accuracy will increase.

4.3. The Effect of Reverberation

In many concrete cases, singers perform within large rooms or

halls, where the microphone might capture replicas of the voice

sound caused by reflections from the surrounding surfaces. To

simulate such reverberant conditions, we considered the L-tap

Room Impulse Response (RIR) of the acoustic channel between

the source to the microphone. RIRs are characterized by the

value T60, defined as the time for the amplitude of the RIR to

decay to -60dB of its initial value. A room measuring 3x4x5 m

and T60 ranging {100, 200, . . . , 500} ms was simulated us-

ing the source-image method [31] and the simulated impulse

responses convolved with the clean audio signals.

The performance of the algorithms under simulated rever-

berant conditions are presented in Table 2 for the whole experi-

mental database. DYPSA is excluded from this experiment be-

cause the large majority of recordings caused software errors in

the Voicebox [32] implementation used in our experiments. The

results from the remaining algorithms are presented in Table 2

Taking both reliability and accuracy into account, SE-

DREAMS is the most robust algorithm among the tested. Sim-

ilarly, HE provides good reliability but the accuracy is signifi-

cantly lower in comparison. While YAGA is comparably reli-

able, its accuracy is very sensitive to reverberation, and makes

it a less desirable choice along with the worst performer, ZFR.

Table 2: Performance of GCI estimation algorithms with in-

creasing reverb levels (RL)

IDR (%)

Algorithm

/ T60 (ms.)
100 200 300 400 500

HE

SEDREAMS

YAGA

ZFR

90.99

90.81

86.02

43.80

90.66

91.81

83.31

43.01

90.58

90.74

81.69

41.89

90.55

90.37

80.20

41.09

90.58

89.68

79.10

40.62

Accuracy to

±0.25ms.

Algorithm

/ T60 (ms.)
100 200 300 400 500

HE

SEDREAMS

YAGA

ZFR

25.63

52.52

49.24

16.02

28.07

49.03

32.23

13.88

28.97

47.34

27.21

15.05

28.71

45.27

25.27

15.91

29.58

43.52

24.23

18.02

5. Conclusion

In this study, we provided a comparative evaluation of GCI esti-

mation methods as an effort toward establishing the foundation

for the development of efficient wide-range singing synthesis

algorithms. This problem has been studied extensively for the

speech signal, and we aimed to answer the question of what

the best method for estimating GCIs of the singing voice is.

Five of the most representative state-of-the-art techniques were

evaluated on a large dataset containing a rich variety of singing

techniques. As we expected, the question does not have a single

answer, and the best choice largely depends on the pitch range

of the singing, as well as the requirements of the target appli-

cation. The robustness of the GCI estimation methods to rever-

beration was also evaluated. Here, SEDREAMS was clearly the

most robust. Another aim of this paper was to identify areas of

improvement specific to the singing voice. Our results display

that there is a clear lack and need of high-accuracy methods,

and helps display the accuracy gap between speech and singing

quantitatively.
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