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Abstract— In this paper, we introduce a new automatic 
method for electrocardiogram (ECG) artifact elimination from 
the electroencephalogram (EEG) or the electrooculogram 
(EOG). It is based on a modification of the independent 
component analysis (ICA) algorithm which gives promising 
results while only using a single-channel EEG (or EOG) and the 
ECG. To check the effectiveness of our approach, we compared 
its correction rate with those obtained by ensemble average 
subtraction (EAS) and adaptive filtering (AF). For this purpose, 
we applied these algorithms to 10 excerpts of polysomnographic 
sleep recordings containing ECG artifacts and other typical 
artifacts (e.g. movement, sweat, respiration, etc.). Two hundred 
successive interference peaks were examined in each excerpt to 
compute correction rates. We found that our modified ICA was 
the most robust to various waveforms of cardiac interference 
and to the presence of others artifacts, with a correction rate of 
91.0%, against 83.5% for EAS and 83.1% for AF.  

I. INTRODUCTION 

LECTROCARDIOGRAM (ECG) artifacts occur when the 
relatively high cardiac electrical field affects the surface 

potentials on the scalp and near the eyes. This leads to 
interference on the electroencephalograms (EEG) and 
electrooculograms (EOG) which can easily be recognized by 
its periodicity and its coincidence with the ECG peaks.  Its 
waveform can vary from derivation to derivation and large 
inter-individual voltage variations can be observed [1]. 

ECG artifacts constitute a serious problem for the 
automatic interpretation and analysis of polysomnographic 
signals. Hence, some methods have been developed for 
removing them. Fortgens and De Bruin [2] proposed an 
algorithm whereby the correction was made by subtracting a 
linear combination of four ECG derivations. The weights of 
this combination were calculated so as to minimize the EEG 
variance after subtraction. 

The Ensemble Average Subtraction (EAS) method was 
described and used by Nakamura and Shibasaki [3], Harke 
et al. [4] and Park et al. [5]. In this approach, an average 
ECG-artifact waveform was computed for each 
homogeneous EEG portion and an estimate of the artifact 
was generated by repeating this template synchronously with 
the interference peaks. This signal was then subtracted from 
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the contaminated EEG to correct it. 
 Sahul et al. [6] introduced artifact cancellation by 

adaptive filtering (AF) using an ECG channel reference. 
Strobach et al. [7] showed that this method was not 
appropriate if the ECG and the real interference exhibit 
remarkably different waveforms. They introduced a two-pass 
adaptive filtering algorithm where an artificial reference was 
first generated by ensemble averaging, to be more related to 
the real interference than the ECG.  

Finally, some authors investigated the use of independent 
component analysis (ICA) to eliminate the ECG artifact ([8]-
[10]). Unfortunately, either their methods required many 
EEG channels and implied to visually select the origin of 
cardiac interference among estimated sources, or their 
methods were found to be somehow inefficient since the 
artifact was reduced but still visible.  

In this paper, we introduce a new algorithm resulting from 
a modification of the ICA method. The algorithm gives 
promising results while using only a single-channel EEG (or 
EOG) and the ECG. To check its effectiveness, we have also 
implemented the EAS and AF methods and compared their 
correction rate and their robustness to the new algorithm. 

Section II describes the algorithm based on the ICA 
method to remove ECG artifact.  Section III presents the 
experimental results. Section IV discusses them and 
concludes this paper.  

II. METHOD 

Independent component analysis (ICA) was developed 
some years ago in the context of blind source separation. Its 
aim is to estimate N source signals s1(t), s2(t), …, sN(t) 
unknown but assumed to be statistically independent, from 
the observation of  M signals x1(t), x2(t), …, xM(t)  which 
result from a mixture of the underlying sources signals.   

ICA requires at least as many mixtures as there are 
independent sources (M N≥ ). In our case, we suppose 
M equal toN , and we try to estimate the original EEG and 
the original interference (the two source signals) from two 
observed signals: the ECG and the corrupted EEG.  

In the simplest case, the mixture is supposed to be linear 
and instantaneous so that observations at time instant t result 
from a linear combination of the sources at that instant:   

                    
1

( ) ( ) 1
N

i ij j
j

x t a s t i M
=

= = …∑  (1) 

This is clearly not the case here, as the interference peaks 
are not exactly synchronised with the R-peaks of the ECG. 
As a matter of fact, we found experimentally that applying 
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ICA with such hypotheses on our observed signals did not 
lead to efficient correction of the cardiac artifacts. We 
therefore applied the so-called convolutive linear model, 
where the observations result from a linear mixture of the 
sources filtered by FIR filters: 

                
1

( ) ( ) ( ) 1
N

i ij j
j

x t a t s t i M
=

= ∗ = …∑        (2) 

where aij(t) is the transfer function between the jth source and 
the ith sensor.  

As illustrated on Fig. 1, the purpose of ICA in this case is 
to find a source separation system, whose outputs should be 
equal to the original sources: 
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By using the FIR linear algebra notation1, equations (2) 
and (3) can be written as:  
                                        =t tx A s  (4) 
                                     ≈ =t t ts y Wx  (5) 

where the element Aij(z) of the mixing matrixA  corresponds 
to the transfer function between the jth source and the i th 
sensor, and the element Wij(z) of the separating matrix W  
corresponds to the transfer function between the jth sensor 
and the ith estimated source.   

To find the unknown separating matrixW , Bell and 
Sejnowski [11] proposed to maximize the joint entropy 

)(gH  of the vector gt=[g1(t), g2(t), …, gN(t)]T, whose 

components ( ) ( ))()()( tyFtygtg isii ≈=  are the sources yi(t)  

transformed by a sigmoid function g which approximates to 
the cumulative density function Fs  of the sources (seen as 
random signals). In the convolutive case, this suggests to 
work with a feedforward architecture, as illustrated on Fig. 2. 

A common choice for the sigmoid function g is the logistic 
function ( ) ( ) 1)exp(1 −−+= ii yyg  . 

The separating matrix which maximizes the joint entropy 
)(gH  can be found by a gradient-ascent algorithm which 

consists in iterating on:  
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 (6) 
where µ  is the learning rate and  wij(k) is the kth coefficient 

of the FIR filter between the jth sensor and the ith estimated 
source.  

Torkkola [12] has shown that this results in iterating on: 
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1 In the FIR linear algebra notation, matrices are composed of FIR filters 

instead of scalars and the multiplication between two such FIR matrix 
elements is defined as their convolution.  

 
Fig. 1.  Convolutive linear mixture of two sources, and the corresponding 
source separation system. 

 
Fig. 2.  Network architecture for ICA based on the maximization of the 
joint entropy. 

Fig. 3.  Network architecture for our modified ICA algorithm. 

 

and where )det( 0=kW is the determinant of the matrix 0=kW , 

)0(ij∆ is the determinant of the matrix obtained by removing 

the ith row and the jth column from 0=kW , ( )iis ygyF =)(  , 

( )
i

i
is y

yg
yp

∂
∂=)( and E [.]  is the mathematical expectation.  

 We implemented this ICA algorithm and noted 
experimentally (as Harke et al.[4]) that it has some 
difficulties to converge towards the correct solution, 
especially when the sampling rate is high. We therefore 
considered an additional hypothesis to improve the 
convergence: we supposed that the interference on the EEG 
is a filtered version of the first observed signal (the ECG). 
The resulting architecture is illustrated on Fig. 3, with a 
mixing matrix and a separating matrix of the form:  
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where { }10 0 0 0 0...impulseh =  is the identify FIR filter, 

and h corresponds to the unknown interference shaping. 
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The iterative algorithm simplifies to: 
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with 
0impulse

initial
initial impulse

h

h h

 
=  
 

W  (11) 

It should be noted that, while this additional assumption 
(i.e. the interference can be well approximated by applying a 
simple FIR to the reference signal) is identical to the one 
made in the adaptive filtering approach, the separation 
criterion is completely different. So are the results, as we will 
see in section III.  

It remains that this assumption can be discussed if the 
ECG is directly used as the reference signal. Indeed, the 
interference and ECG signals can sometimes exhibit 
remarkably different waveforms although they are 
synchronized temporally. 

We therefore also tested the use of an artificial reference 
signal as suggested by Strobach et al. for the adaptative 
filtering [7]. This artificial reference signal is generated by 
repeating the average artifact waveform synchronously with 
the position of the R peaks of the ECG (Fig. 4): 
                      )()()( nTnanx ∗=  (12) 

where )(nx  is the artificial reference signal (see an example 

on Fig. 4c), )(nT is a trigger indicating the positions of the 

R peaks of the ECG, and )(na  is the average artifact 

waveform recomputed for each 20s-fragment, by averaging 
segments of corrupted signal located around each 
interference peak.  

 In this work, we tested these two approaches. 

III.  RESULTS  

A. Recordings  

The data used in this study were recorded at the Sleep 
Laboratory of the André Vésale hospital (Montigny-le-
Tilleul, Belgium). They are composed of 10 excerpts of 15 
minutes-long polysomnographic sleep recordings, randomly 
selected during the night. The recordings were taken from 
patients (7 males and 3 females aged between 40 and 73) 
with different pathologies (dysomnia, restless legs syndrome, 
insomnia, apnoea/hypopnoea syndrome).  They all contain 
cardiac interference as well as other typical artifacts (e.g. 
movement, sweat, respiration, etc.). The sampling rates were 
50, 100 and 200Hz. Only the ECG channel and the corrupted 
signal (EEG or EOG) were used to perform the ECG artifact 
correction. For each method, two hundred successive 
interference peaks of each excerpt were visually examined to 
compute the number of corrected peaks. 

A total of 2000 interference peaks were thus examined to 
compute the final correction rate.  

 
Fig. 4.  a) ECG, b) EEG corrupted by ECG artifact, c) artificial reference. 

 
Fig. 5.  Global correction rates of the five processes computes on the 10 
excerpts (2000 interference peaks) 

B. Experimental results  

To check the effectiveness of our new algorithm, we have 
implemented other existing methods to compare their 
correction rate and their robustness. Five algorithms were 
then tested: 

 

• The ensemble average subtraction (EAS); 
• The adaptive filtering (AF-ECG), using an ECG reference; 
• The adaptive filtering (AF-EA), using an artificial 

reference generated by ensemble averaging; 
• The independent component analysis (ICA-ECG), using 

the corrupted EEG and the ECG as observed signals; 
• The independent component analysis (ICA-EA), using the 

corrupted EEG and an artificial signal generated by 
ensemble averaging as observed signals. 

 

As it can be seen on the correction rates of the five 
processes (Fig. 5), the first four algorithms exhibit quite 
similar correction rate, while our new method reaches a 
higher correction rate of 91.1%, against 83.5% for ensemble 
average subtraction and 83.1% for adaptive filtering. 

If we look at the number of corrected peaks obtained for 
each patient (Fig.6), we see that the ICA approach using an 
artificial reference is not systematically the algorithm which 
provides the best results. Its correction rate is sometimes 
higher than in the other methods, and sometimes lower. 
However, while other methods sometimes completely fail on 
some excerpts (e.g pat1 for AF-EA, pat4 for AF-ECG and 
pat7 for ICA-ECG), the ICA-EA method always provides 
very satisfactory results. The reasons of this superiority will 
be discussed in the following section but we can already 
notice that our new method seems to be more robust to 
various types of polysomnographic signals than the other 
processes.   
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Fig. 6. Comparison between the ICA-EA method and the four other 
algorithms: number of corrected peaks for each patient.  

IV.  DISCUSSION AND CONCLUSION 

To carry out an automatic analysis of polysomnographic 
signals (such as a sleep stage classification) in a hospital, it is 
important for the system to be robust to the noise and 
independent of derivations used during the recording.  

The EAS algorithm is rather sensitive to noise. On one 
hand, the others artifacts (such as those due to eye blinks, 
movements, sweat, etc.) prevent an accurate detection of the 
interference peaks; on the other hand these artifacts can have 
a big influence on the computed average interference 
waveform as it can be seen on Fig.7. 

The AF-ECG and ICA-ECG methods are more robust to 
artifacts, but their performance completely fail for patients 4 
and 7 (Fig. 6). This is due to the fact that the cardiac 
interference waveform is rather different from the ECG 
signal in the recordings of these patients. The use of artificial 
reference is then very beneficial: it facilitates convergence 
towards the correct solution, increasing the number of 
corrected peaks by the AF-EA and ICA-EA methods. 

When the cardiac interference waveform is similar to that 
of the ECG, the artificial reference signal is also quite similar 
to the ECG (since it is obtained by averaging segments of 
corrupted signal located around each interference peak). 
However, the slight differences between the artificial signal 
and the ECG can sometimes decrease the performance of the 
AF-EA and ICA-EA processes (patients 1 and 3 on Fig. 6). 
Fortunately, this loss of performance is small compared with 
the increase in the number of corrected peaks when the 
cardiac interference waveform is different from that of the 
ECG. In addition, it seems that adaptive filtering is more 
sensitive to this problem than the ICA method. This shows 
again the robustness of our new process, this time to a slight 
modification of the reference. 

In conclusion, we presented a new method for correcting 
ECG artifacts, based on independent component analysis 
(ICA). The algorithm uses only two observed signals: the 
corrupted EEG (or EOG) and an artificial signal generated 
by repeating the average artifact waveform each time the 
ECG trigger is different from zero. An additional hypothesis 
is considered, which improve the convergence of the 
algorithm:  the interference which is added to the EEG is 

 
Fig. 7.  Results obtained  on a 20s  excerpt from patient 10: a) ECG,  b) 
corrupted signal, c) estimate of the cardiac interference by the EAS 
methods , d) estimate of the cardiac interference by ICA-EA 

 

assumed to be a filtered version of the artificial signal.  This 
new process is much more robust to various waveforms of 
cardiac interference and to the presence of others artifacts 
than other tested processes (i.e. the ensemble average 
subtraction and the adaptive filtering). This probably 
explains why, on average, we found that our new algorithm 
was the most promising correction method, with a correction 
rate of 91.1%, against 83.5% for ensemble average 
subtraction and 83.1% for adaptive filtering. 
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