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Abstract— In this paper, we introduce a new automatic the contaminated EEG to correct it.

method for electrocardiogram (ECG) artifact elimination from
the electroencephalogram (EEG) or the electrooculsgm
(EOG). It is based on a modification of the indepetent
component analysis (ICA) algorithm which gives prorsing
results while only using a single-channel EEG (or 8G) and the
ECG. To check the effectiveness of our approach, wempared
its correction rate with those obtained by ensembleaverage
subtraction (EAS) and adaptive filtering (AF). For this purpose,
we applied these algorithms to 10 excerpts of polgsinographic
sleep recordings containing ECG artifacts and othertypical
artifacts (e.g. movement, sweat, respiration, etc.Ywo hundred
successive interference peaks were examined in eagkcerpt to
compute correction rates. We found that our modifie ICA was
the most robust to various waveforms of cardiac irgrference
and to the presence of others artifacts, with a coection rate of
91.0%, against 83.5% for EAS and 83.1% for AF.

. INTRODUCTION

Sahul et al [6] introduced artifact cancellation by
adaptive filtering (AF) using an ECG channel refee
Strobach et al. [7] showed that this method was not
appropriate if the ECG and the real interferencailsi
remarkably different waveforms. They introduceava-pass
adaptive filtering algorithm where an artificiafeesnce was
first generated by ensemble averaging, to be nwlated to
the real interference than the ECG.

Finally, some authors investigated the use of ieddpnt
component analysis (ICA) to eliminate the ECG adtif([8]-
[10]). Unfortunately, either their methods requirethny
EEG channels and implied to visually select thegioriof
cardiac interference among estimated sources, eir th
methods were found to be somehow inefficient sitiee
artifact was reduced but still visible.

In this paper, we introduce a new algorithm resglfrom

ELECTROCARDIOGRAM (ECG) artifacts occur when the @ modification of the ICA method. The algorithm egv
relatively high cardiac electrical field affectsthurface Promising results while using only a single-charBelG (or

potentials on the scalp and near the eyes. Thdsl¢a

EOG) and the ECG. To check its effectiveness, we ladso

interference on the electroencephalograms (EEG) affgPlemented the EAS and AF methods and compared the

electrooculograms (EOG) which can easily be recaghby
its periodicity and its coincidence with the ECGakg Its
waveform can vary from derivation to derivation dadge
inter-individual voltage variations can be obser{Ed

correction rate and their robustness to the neariltgn.

Section Il describes the algorithm based on the ICA
method to remove ECG artifact. Section Il presethte
experimental results. Section

ECG artifacts constitute a serious problem for thgoncludes this paper.

automatic interpretation and analysis of polysomaphic

signals. Hence, some methods have been developed fo

Il. METHOD

removing them. Fortgens and De Bruin [2] proposed a Independent component analysis (ICA) was developed

algorithm whereby the correction was made by sabtrg a
linear combination of four ECG derivations. The gies of
this combination were calculated so as to mininlieeEEG
variance after subtraction.

some years ago in the context of blind source sdipar Its
aim is to estimateN source signals(t), (1), ..., s(t)
unknown but assumed to be statistically independeoin
the observation of M signalsx,(t), %(t), ..., (t) which

IV discusses them and

The Ensemble Average Subtraction (EAS) method wagsult from a mixture of the underlying sourcesalg.
described and used by Nakamura and Shibasaki fglkeH ICA requires at least as many mixtures as there are
etal [4] and Parket al [5]. In this approach, an averageindependent sourcesM = N ). In our case, we suppose
ECG-artifact waveform was computed for eachM equal toN , and we try to estimate the original EEG and
homogeneous EEG portion and an estimate of th&aelrti the original interference (the two source signéiein two
was generated by repeating this template synchetyatith  observed signals: the ECG and the corrupted EEG.
the interference peaks. This signal was then sttielafrom In the simplest case, the mixture is supposed ttinear

and instantaneous so that observations at timanittstesult
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ICA with such hypotheses on our observed signadsndit
lead to efficient correction of the cardiac artttacWe
therefore applied the so-called convolutive lineaodel,
where the observations result from a linear mixtafehe
sources filtered by FIR filters:

x (t) :iaj(t)ﬂﬂt) i=1...M

wherea;(t) is the transfer function between iffesource and
thei™ sensor.

As illustrated on Fig. 1, the purpose of ICA instltiase is
to find a source separation system, whose outfatsld be
equal to the original sources:

S(0=¥(0=3 w050

By using the FIR linear algebra notatipaquations (2)
and (3) can be written as:
X =As, (4)

s =y = Wx (5)
where the element£z) of the mixing matriXA corresponds
to the transfer function between tf® source and thé™
sensor, and the element; &) of the separating matriyV
corresponds to the transfer function betweenjthsensor
and thei"" estimated source.

To find the unknown separating matvix, Bell and
Sejnowski [11] proposed to maximize the joint epyro
H(g) of the vectorg=[gai(t), ®(t), ..., au(®)]", whose

components g (t) = g(y, (t)) = F.(y,(t)) are the sourceg(t)

@)

3)

transformed by a sigmoid functianwhich approximates to
the cumulative density functioRs of the sources (seen as

random signals). In the convolutive case, this sstgto
work with a feedforward architecture, as illustchtan Fig. 2.
A common choice for the sigmoid functigns the logistic
functior g(y,) = (1+ expt-y,)) ™ -
The separating matrix which maximizes the jointremy

H(g) can be found by a gradient-ascent algorithm whic

consists in iterating on:

w (k) < w, () + 22O i O N] KO, K]
ow; (k) (6)
where y is the learning rate and;(k) is thek" coefficient
of the FIR filter between thg" sensor and thé" estimated
source.
Torkkola [12] has shown that this results in itergton:

E|:d " 1 m—l)wl_Aij (O)+%D(J for k=0
w, (k) — w; (k) + ae (M’)) )
E[OFS(M) D(iw} for k#0 Oi, jO[RL,...,N]
(7)
with W, 0) wyy (0) ©
k=0 — : :
Wi ©) Wi ©

1 In the FIR linear algebra notation, matrices anmgosed of FIR filters
instead of scalars and the multiplication betwesn such FIR matrix
elements is defined as their convolution.
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Fig. 1. Convolutive linear mixture of two sourcesid the corresponding
source separation system.
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Fig. 2. Network architecture for ICA based on theximization of the
joint entropy.
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Fig. 3. Network architecture for our modified I@égorithm.

and wheredet(w, _ ) is the determinant of the matr/, _, ,

[’

A, 0) is the determinant of the matrix obtained by remgvi

the i row and thg™ column from W, F (y,) =g(y,) -
p(y) = % andE [] is the mathematical expectation.
|

We implemented this ICA algorithm and noted
experimentally (asHarke et al[4]) that it has some
difficulties to converge towards the correct saoti
especially when the sampling rate is high. We tioeee
considered an additional hypothesis to improve the
convergence: we supposed that the interferencb@EEG
is a filtered version of the first observed sigfthle ECG).
The resulting architecture is illustrated on Fig.v@th a
mixing matrix and a separating matrix of the form:

A — (hmpulse 0 ] and W = [hmpulse 0 J (9)
h I’]mpulse _h IF!mpulse
where R ...={100000.}. is the identify FIR filter,

and h corresponds to the unknown interference shaping.
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100

The iterative algorithm simplifies to: o
O_
-100
E[ L g .A21(0)+MD<1} for k=0 ol
det(W,o) oF(Y,) b) g
Wy (K) — Wy (K) + 1 a 50k
E{M D(l(,k} for k#0 o
oF(y,) ™
c) 0
(10)
-50 : : : :
with <[ Dmeuse O (11) ! % Time s ° 4 °
initial hnitial r}’npulse Fig. 4. a) ECG, b) EEG corrupted by ECG artifagtartificial reference.
It should be noted that, while this additional asgtion W percentage of corrected peaks
(i.e. the interference can be well approximatecpylying a 5 percentage of uncorrected or badly corrected peaks
simple FIR to the reference signad) identical to the one 120,00
made in the adaptive filtering approach, the sdjmara 100.00 : 1 I
criterion is completely different. So are the résuhs we will ’ 83,50, |s83,10 81,95 17980 91,10
see in section Il 80,00
It remains that this assumption can be discussdteif 60,00
ECG is directly used as the reference signal. ldddlee 40,00
interference and ECG signals can sometimes exhibit 20,00 16,5 | 16,9 18,05 |8 20,2
remarkably different waveforms although they are 82

. 0,00
synchronized temporally. - EAS  AFECG AFEA ICAECG ICAEA

We therefore also tested the use of an artifi@&rence Fig. 5. Global correction rates of the five prazsscomputes on the 10
signal as suggested by Strobashal for the adaptative excerpts (2000 interference peaks)

filtering [7]. This artificial reference signal generated by

repeating the average artifact waveform synchrdgowith B. Experimental results
the position of th&k peaks of the ECG (Fig. 4): To check the effectiveness of our new algorithm haree
x(n) =a(n) LT(n) (12)  implemented other existing methods to compare their

where X(n) is the artificial reference signal (see an exampleorrection rate and their robustness. Five algosthwere

on Fig. 4c), T(n) is a trigger indicating the positions of thethen tested:

R peaks of the ECG, and(N) is the average artifact * The ensemble average subtraction (EAS);

waveform recomputed for each 20s-fragment, by @jega The adaptive filtering (AF-ECG), using an ECG refare;

segments of corrupted signal located around ea<°:hThe adaptive filtering  (AF-EA), using ~an artificial
. reference generated by ensemble averaging;
interference peak.

. » The independent component analysis (ICA-ECG), using
In this work, we tested these two approaches. the corrupted EEG and the ECG as observed signals;
» The independent component analysis (ICA-EA), usiveg
corrupted EEG and an artificial signal generated by
A. Recordings ensemble averaging as observed signals.

The data used in this study were recorded at teepSl  As it can be seen on the correction rates of the fi
Laboratory of the André Vésale hospital (Montigey-| processes (Fig. 5), the first four algorithms eithifuite
Tilleul, Belgium). They are composed of 10 excemftslS  gimilar correction rate, while our new method resra
minutes-long polysomnographic sleep recordingsdeenly  higher correction rate of 91.1%, against 83.5%¢fosemble
selected during the night. The recordings werertdkem  4yerage subtraction and 83.1% for adaptive filterin
patients (7 males and 3 females aged between 40/8nd |t we ook at the number of corrected peaks obthifue
yvith different pathologies (dysomnia, restless Iemdrome, each patient (Fig.6), we see that the ICA apprasihg an
insomnia, apnoea/hypopnoea syndrome). They alla@on gpijicial reference is not systematically the aljon which
cardiac interference as well as other typical @cté (.. provides the best results. Its correction rate asietimes
movement, sweat, respiration, etc.). The sampkitgsrwere phigher than in the other methods, and sometimeseriow
50, 100 and 200Hz. Only the ECG channel and theip@®d  However, while other methods sometimes completailyoh
signal (EEG or EOG) were used to perform the EQifaat  gome excerpts (e.g patl for AF-EA, pat4 for AF-E@®I
correction. For each method, two hundred successiﬁgw for ICA-ECG), the ICA-EA method always prowide
interference peaks of each excerpt were visuayrened t0  yery satisfactory results. The reasons of this sapty will

Ill. RESULTS

compute the number of corrected peaks. ~ be discussed in the following section but we caeaaly
A total of 2000 interference peaks were thus exathitd otice that our new method seems to be more rotmust
compute the final correction rate. various types of polysomnographic signals than dbeer
processes.
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IV. DiscussioN ANDCONCLUSION

To carry out an automatic analysis of polysomnolgiap
signals (such as a sleep stage classificationhiwsaital, it is
important for the system to be robust to the nasel
independent of derivations used during the recgrdin

The EAS algorithm is rather sensitive to noise. @
hand, the others artifacts (such as those due dobbyks,
movements, sweat, etc.) prevent an accurate dmtectithe
interference peaks; on the other hand these dditan have

a big influence on the computed average interfeﬂrenﬁ]

waveform as it can be seen on Fig.7.

The AF-ECG and ICA-ECG methods are more robust to

artifacts, but their performance completely fail fatients 4
and 7 (Fig. 6). This is due to the fact that thedice

interference waveform is rather different from tRECG

signal in the recordings of these patients. Theofisatificial

reference is then very beneficial: it facilitatesneergence
towards the correct solution, increasing the numbér
corrected peaks by the AF-EA and ICA-EA methods.

When the cardiac interference waveform is simitathiait
of the ECG, the artificial reference signal is adgiite similar
to the ECG (since it is obtained by averaging seusnef
corrupted signal located around each interfereneak)p
However, the slight differences between the aidfisignal
and the ECG can sometimes decrease the performétioe
AF-EA and ICA-EA processes (patients 1 and 3 on Ejg
Fortunately, this loss of performance is small careg with
the increase in the number of corrected peaks wthen
cardiac interference waveform is different fromttoé the
ECG. In addition, it seems that adaptive filteriisgmore
sensitive to this problem than the ICA method. Tdtisws
again the robustness of our new process, this tingeslight
modification of the reference.

In conclusion, we presented a new method for conmgc
ECG artifacts, based on independent component sisal
(ICA). The algorithm uses only two observed signalte
corrupted EEG (or EOG) and an artificial signal gaed
by repeating the average artifact waveform eacle tihe
ECG trigger is different from zero. An additionglpothesis

is considered, which improve the convergence of the

algorithm: the interference which is added toHhS is

Jm

-100 ! L L L L
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10
Time [s]
Fig. 7. Results obtained on a 20s excerpt fratiept 10: a) ECG, b)
corrupted signal, c) estimate of the cardiac ieterice by the EAS
methods , d) estimate of the cardiac interfereryd€B-EA

assumed to be a filtered version of the artifisighal. This
new process is much more robust to various wavefasfm
cardiac interference and to the presence of othdifacts
than other tested processes (i.e. the ensembleageer
subtraction and the adaptive filtering). This prolga
explains why, on average, we found that our newrétym
was the most promising correction method, with @aeszion
rate of 91.1%,
subtraction and 83.1% for adaptive filtering.
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against 83.5% for ensemble average



