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Abstract

This project proposes to use the analysis of
physiological signals, such as the electroencephalo-
gram (EEG), electromyogram (EMG) electrocardio-
gram (ECG) and electro-oculogram (EOG), to control
sound synthesis algorithms in order to build a biologi-
cally driven musical instrument. This project took place
during the eNTERFACE’05 summer workshop in Mons,
Belgium. Over four weeks specialists from the fields of
brain-computer interfaces and sound synthesis worked
together to produce biologically controlled musical in-
struments playable in real-time.

1. Introduction

Advances in computer science and specifically in
Human-Computer Interaction (HCI) have now enabled
musical performance using sensor-based instruments in
real-time computer synthesis systems [1]. Musicians
can now use positional, cardiac, muscle and other sensor
data to control sound synthesis [2, 3].

Simultaneously, advances in Brain-Computer Inter-
face (BCI) research have proven that cerebral patterns
can be used as a source of communication and con-
trol [4]. Indeed, cerebral and conventional sensors can
be used together with the object of producing a ‘body-
music’ controlled according to the musician’s cognitive
and proprioceptive processes. Research is already being
done toward integrating BCI and sound synthesis [5, 6].

One salient approach aims to sonify the data derived
from physiological processes by mapping the data di-
rectly to sound synthesis parameters [7, 8, 9]. Another
approach aims to build a musical interface where infer-
ence based on complex feature extraction enables the
musician to intentionally control sound production [6].

In the following, we present: a short history of
biologically-controlled instruments; the architecture we
designed to acquire, process and play music based on bi-
ological signals; strategies for signal acquisition; a dis-
cussion of signal processing techniques; the sound syn-
thesis implementation and the instruments we built; and
conclude with a presentation of some future directions.

2 History

Brainwaves are a form of bioelectricity, or electri-
cal phenomena in animals or plants. Human brainwaves
were first measured in 1924 by Hans Berger. He termed
these electrical measurements the electroencephalogram
(EEG), which means literally ‘brain electricity writing’.
Berger first published his brainwave results in 1929 as
“Über das Elektrenkephalogramm des Menschen” [10].
The English translation did not appear until 1969. His
results were verified by Adrian and Matthews in 1934
who also attempted to listen to the brainwave signals via
an amplified speaker [11].

This was the first attempt to sonify human brainwaves
for auditory display. The first instance of the intentional
use of brainwaves to generate music did not occur until
1965, when Alvin Lucier [12], who had begun work-
ing with physicist Edmond Dewan, composed a piece of
music using brainwaves as the sole generative source.
Music for Solo Performer was presented, with encour-
agement from John Cage, at the Rose Art Museum of
Brandeis University in 1965.

In the late 1960s, Richard Teitelbaum was a mem-
ber of the innovative Rome-based live electronic music
group Musica Elettronica Viva (MEV). In performances
of Spacecraft (1967) he used various biological signals
including brain (EEG) and cardiac (ECG) signals as con-
trol sources for electronic synthesisers. Over the next
few years, Teitelbaum continued to use EEG and other
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biological signals in his compositions and experiments
as triggers for the nascent Moog electronic synthesiser.

Then, in the late 1960s, another composer, David
Rosenboom, began to use EEG signals to generate
music. In 1970-71 Rosenboom composed and per-
formed Ecology of the Skin, in which ten live EEG
performer-participants interactively generated immer-
sive sonic/visual environments using custom-made elec-
tronic circuits. Around the same time, Rosenboom
founded the Laboratory of Experimental Aesthetics at
York University in Toronto, which encouraged pioneer-
ing collaborations between scientists and artists. For
the better part of the 1970s, the laboratory undertook
experimentation and research into the artistic possibil-
ities of brainwaves and other biological signals in cy-
bernetic biofeedback artistic systems. Many artists and
musicians visited and worked at the facility during this
time including John Cage, David Behrman, LaMonte
Young, and Marian Zazeela. Some of the results of the
work at this lab were published in the book “Biofeed-
back and the Arts” [13]. A more recent monograph by
Rosenboom, “Extended Musical Interface with the Hu-
man Nervous System” [14], remains the definitive theo-
retical aesthetic document in this area.

In France, scientist Roger Lafosse was doing re-
search into brainwave systems and proposed, along with
musique concrète pioneer Pierre Henry, a sophisticated
live performance system known as Corticalart (art from
the cerebral cortex). In a series of free performances
done in 1971, along with generated electronic sounds,
one saw a television image of Henry in dark sunglasses
with electrodes hanging from his head, projected so that
the content of his brainwaves changed the colour of the
image according to his brainwave patterns.

Starting in the early 1970s, Jacques Vidal, a com-
puter science researcher at UCLA, simultaneously be-
gan working to develop the first direct brain-computer
interface (BCI) system using a IBM mainframe com-
puter and other custom data acquisition equipment. In
1973, he published “Toward Direct Brain-Computer
Communication” [15] based on this work.

In 1990 Jonathan Wolpaw et al [16] at Albany devel-
oped a system to allow a user to exercise rudimentary
control over a computer cursor via the alpha band of
their EEG spectrum. Around the same time, Christoph
Guger and Gert Pfurtscheller also began researching and
developing BCI systems along similar lines in Graz,
Austria [19].

In the early 1990s two scientists, Benjamin Knapp
and Hugh Lusted [17], began working on a human-
computer interface called the BioMuse. It permitted a
human to control certain computer functions via bio-
electric signals. In 1992, Atau Tanaka [1] was commis-

sioned by Knapp and Lusted to compose and perform
music using the BioMuse as a controller. Tanaka contin-
ued to use the BioMuse, primarily as an EMG controller,
in live performances throughout the 1990s. In 1996,
Knapp and Lusted wrote an article for Scientific Ameri-
can about the BioMuse entitled “Controlling Computers
with Neural Signals” [18].

In 2002, the principal BCI researchers in Albany and
Graz published a comprehensive survey of the state of
the art in BCI research, “Brain-computer interfaces for
communication and control” [4]. Then, in 2004, an issue
dedicated to the broad sweep of current BCI research
was published in IEEE Biomedical Transactions [20].

3 Architecture

Our intention was to build a robust, reusable frame-
work for biosignal capture and processing geared to-
wards musical applications. To maintain flexibility,
signal acquisition, processing and sound synthesis are
performed on different physical machines linked via
ethernet. Data are acquired via custom hardware
which is linked to a host computer running a Mat-
lab/Simulink [21] real-time blockset. Data are analysed
before being sent - via OpenSoundControl [22] - to the
visualisation, software sound synthesis and spatialisa-
tion nodes. The sound synthesis and spatialisation are
performed using the Max/MSP [23] programming envi-
ronment.

3.1 Software
3.1.1 Matlab and Simulink

We are using various biosignal analysis methods includ-
ing the wavelet transform and spatial filters. All of the
signal processing algorithms are written in Matlab [21].
Because signal acquisition from the EEG cap is done
using custom C++ code, we must use a method in C++
to send the data stream to Matlab directly. We imple-
mented our signal processing code as a Simulink [21]
blockset using Level-2 M file S-functions with tuneable
method parameters. This allows us to dynamically adapt
to the incoming signals. Subsequently, we proceed with
a real-time, adaptive analysis.

3.1.2 Max/MSP

Max/MSP [23] is a software programming environment
optimised for flexible real-time control of music sys-
tems. It was first developed at IRCAM by Miller Puck-
ette as a simplified front end controller for the 4X se-
ries of mainframe music synthesis systems. It was fur-
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ther developed as a commercial product by David Zi-
carelli [24] and others at Opcode Systems and Cycling
74 [?]. It is currently the most popular environment
for programming of real-time interactive music perfor-
mance systems.

There are other open-source environments which
could be more interesting in the long-term especially in
an academic context: Pure Data and jMax are both open-
source work-alike software implementations which al-
though not as mature as Max/MSP are nonetheless very
usable. SuperCollider would be another potential open-
sourced programming environment. It is also very pow-
erful and expressive, if somewhat more arcane and diffi-
cult to program, largely due to its proprietary text-based
programming paradigm.

3.2 Data Exchange
Data transmission between machines is implemented us-
ing UDP/IP protocol over ethernet. We chose this for
best real-time performance. Reliability of UDP on an
ethernet LAN is not an issue from experience. Specific
musical messages were encoded using the OpenSound-
Control [22] protocol which sits on top of UDP.

3.2.1 Open Sound Control (OSC)

OSC was conceived as a protocol for the real-time con-
trol of computer music synthesisers over modern het-
erogeneous networks. Its development was informed
by shortcomings experienced with the established MIDI
standard and the difficulties in developing a more flexi-
ble protocol for effective real-time control of expressive
music synthesis.

OSC was first proposed by Matthew Wright and
Adrian Freed in 1997, since which time it has become
very widely implemented in software and hardware de-
signs (although, its use is still not as widespread as
MIDI). Although it can function in principle over any
appropriate transport/physical layer such as WiFi, se-
rial, USB etc., current implementations of OSC are op-
timised for UDP/IP transport over Fast Ethernet in a Lo-
cal Area Network. For our project, we used OSC to
transfer data from Matlab (running on a PC with either
Linux or Windows OS) to Macintosh computers running
Max/MSP.

4 Data Acquisition

ECG, EMG and EOG were captured on one computer
with a multipurpose acquisition system and EEG was ac-
quired on another system specialised for brainwave data
capture.

4.1 EEG

EEG data are sampled at 64 Hz on 19 channels with a
DTI cap. Data are filtered between 0.5 and 30 Hz. Elec-
trodes are positioned following the 10-20 international
system and Cz is used as reference. The subject sits in
a comfortable chair and is asked to concentrate on dif-
ferent tasks. The recording is done in a normal working
place: a noisy room with people working, talking and
other ambient sounds. The environment is not free of
electrical noise as there are many computers, speakers,
monitors, microphones and lights nearby.

4.2 EMG, ECG and EOG

To record the EMG and ECG, three Biopac MP100 am-
plifiers were used. The amplification factor for the EMG
was 5000 and the signals were filtered between 0.05-35
Hz. The microphone channel has a gain factor of 200
and DC-300 Hz bandwidth.

Another 2 channel amplifier is used to collect the
EOG signals. This amplifer has gain factor of 4000 and
0.4-60Hz passband. For real time capabilities, these am-
plified signals are fed to a National Instruments DAQPad
6052e analog-digital converter card that uses the IEEE
1394 port.

Disposable ECG electrodes were used for both EOG
and EMG recordings. The sounds were captured using
the Biopac BSL contact microphone.

5 BioSignal Processing

We tested various parameter extraction techniques in
search of those which could give us the most meaningful
results.

We focused mostly on EEG signal processing as it
is the richest and most complex bio-signal. The un-
trained musician normally has less conscious control
over brain biosignals as opposed to other biosignals and
therefore sophisticated signal processing was reserved
for the EEG which needed more processing to produce
useful results. The data acquisition program samples
blocks of EMG or EOG data in 100 ms frames. Soft-
ware then calculates the energy for the EOG and EMG
channels, and sends this information to the related in-
struments. The heart sound itself is sent directly to the
instruments to provide a rhythmic motif.

Two kinds of EEG analysis are done. The first one
attempts to determine the user’s intent based on tech-
niques recently developed in the BCI community [4]. A
second approach looks at the origin of the signal and at
the activation of different brain areas. The performer has
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less control over results in this case. There are more de-
tails on both of these EEG analysis methods at the end
of this section.

5.1 Detection of Musical Intent

To detect different brain states we measured spatial dis-
tribution and temporal rhythms present.

Three main rhythms are of interest:

1. Alpha rhythm: usually between 8-12 Hz, this
rhythm describes the state of awareness. If we cal-
culate the energy of the signal using the occipital
electrodes, we can evaluate the state of awareness
of the musician. When he closes his eyes and re-
laxes the signal increases. When the eyes are open
the signal is low.

2. Mu rhythm: This rhythm also ranges from 8 to 12
Hz but can vary from one person to another, some-
times between 12-16 Hz. The mu rhythm corre-
sponds to motor tasks like moving the hands or
legs, arms, etc. We use this rhythm to distinguish
movements of the left or right hands.

3. Beta rhythm: Comprised of energy between 18-26
Hz. Beta is linked to motor tasks and higher cogni-
tive functions.

The wavelet transform [25] is a technique of time-
frequency analysis prefectly suited for task detection.
Individual tasks can be detected by looking at specific
frequency bands on specific electrodes.

This operation, implemented using sub-band filters,
provides us with a filter bank tuned to the frequency
ranges of interest. We tested our algorithm on two sub-
jects with different kinds of wavelets: Meyer wavelet,
9-7 filters, bi-orthogonal spline wavelet, Symlet 8 and
Daubechy 6 wavelets. We finally chose the symlet 8
which gave better overall results.

At the beginning we focused on eye blink detection
and α band power detection because both are easily con-
trollable by the musician. We then wanted to try more
complex tasks such as those used in the BCI commu-
nity. These are movements and imaginations of move-
ments, such as hand, foot or tongue movements, 3D spa-
tial imagination or mathematical calculation. The main
problem is that each BCI user must be trained to improve
his control over the task signal. Therefore we decided to
use only right and left hand movements first and not the
more complex tasks which would have been harder to
detect. Two other techniques were also used: Asymme-
try Ratio and Spatial Decomposition.

5.1.1 Eye blinking and α band

Eye blinking is detected on Fp1 and Fp2 electrodes in
the 1-8Hz frequency range by looking at increase of the
band power. We process the signals from electrodes O1
and O2 -occipital electrodes- to exctract the power of the
alpha band.

5.1.2 Asymmetry Ratio

Consider we want to distinguish left from right hand
movements. It is known that motor tasks activate the
cortex area. Since the brain is divided in two hemi-
spheres that control the two sides of the body it is possi-
ble to recognise when a person moves on the left or right
side. Let C3 and C4 be the two electrodes positioned on
the cortex, the asymmetry ratio can be written as:

ΓFB =
PC3,FB − PC4,FB

PC3,FB + PC4,FB
(1)

where PCx,FB is the power in a specified frequency
band (FB), i.e. the mu frequency band. This ratio has
values between 1 and -1. Thus it is positive when the
power in the left hemisphere (right hand movements) is
higher than the one in the right hemisphere (left hand
movements) and vice-versa.

The asymmetry ratio gives good results but is not
very flexible and cannot be used to distinguish more than
two tasks. This is why it is necessary to search for more
sophisticated methods which can process more than just
two electrodes simultaneously.

5.1.3 Spatial Decomposition

Two spatial methods have proven to be accurate: The
Common Spatial Patterns (CSP) and the Common Spa-
tial Subspace Decomposition (CSSD) [26, ?]. We will
shortly describe here the second one (CSSD): This
method is based on the decomposition of the covariance
matrix grouping two or more different tasks. It is impor-
tant to highlight the fact that this method needs a learn-
ing phase where the user executes two tasks.

The first step is to compute the autocovariance matrix
for each task. Given one signal X of dimension N × T
for N electrodes and T samples, we decompose X in
XA and XB , A and B. By using two different tasks, we
can obtain the autocovariance matrix for each task:

RA = XAXT
B and RB = XBXT

B (2)

We now extract the eigenvectors and eigenvalues from
the R matrix that is the sum of RA and RB :

R = RA + RB = U0λUT
0 (3)
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We can now calculate the spatial factors matrix W and
the whitening matrix P :

P = λ−1/2UT
0 and W = U0λ

1/2 (4)

If SA = PRAPT and SB = PRBPT , these matrices
can be factorised:

SA = UAΣAUT
A SB = UBΣBUT

B (5)

Matrix UA et UB are equals and the sum of their eigen-
value is equal to 1, ΣA + ΣB = I . ΣA et ΣB can be
written thus:

ΣA = diag[ 1...1︸︷︷︸
ma

σ1...σmc︸ ︷︷ ︸
mc

0...0︸︷︷︸
mb

] (6)

ΣB = diag[ 0...0︸︷︷︸
ma

δ1...δmc︸ ︷︷ ︸
mc

1...1︸︷︷︸
mb

] (7)

Taking the first ma eigenvector from U , we obtain Ua

and we can now compute the spatial filters and the spa-
tial factors:

SPa = WUa (8)

SFa = UT
a P (9)

We proceed identically for the second task, taking
care this time with the last mb eigenvectors. Specific
signal components of each task can then be extracted
easily by multiplying the signal with the corresponding
spatial filters and factors. For the task A it gives:

X̂a = SPaSFaX (10)

A support vector machine (SVM) with a radial basis
function was used as a classifier.

5.1.4 Results

The detection of eye blinking during off-line and real-
time analysis was higher than 95%, with a 0.5s time
window. For hand movement classification with spatial
decomposition, we chose to use a 2s time window. A
smaller window significantly decreases the classification
accuracy. The CSSD algorithm needs more training data
to achieve a good classification rate so we decided to
use 200 samples of both right hand and left hand move-
ments, each sample being a 2s time window. Thus, we
used an off-line session to train the algorithm. However
each time we used the EEG cap for a new session, the
electrode locations on the subject’s head changed. Per-
forming a training session one time and a test session
another time gave poor results so we decided to develop
new code in order to do both training and testing in one

session. This had to be done quite quickly to ensure the
user’s comfort.

We achieved an average of 90% good classifications
during off-line analysis, and 75% good classifications
during real-time recording. Real-time recording accu-
racy was a bit less than expected. (This was probably
due to a less-than-ideal environment - with electrical and
other noise - which is not conducive to accurate EEG
signal capture and analysis.) The asymmetry ratio gave
somewhat poorer results.

5.2 Spatial Filters

EEG is a measure of electrical activities of the brain
as measured from the external skull area. Different
brain processes can activate different areas. Discover-
ing which areas are active is difficult as many different
source configurations can lead to the same EEG record-
ing. Noise in the data further complicates this problem.

In the following, we present the methods - based on
forward and inverse problems - and the hypothesis we
propose to solve the problem in real time.

5.2.1 Forward Problem, head model and solution
space

If X is a Nx1 vector containing the recorded potential
with N representing the number of electrodes. S is an
Mx1 vector of the true source current with M the un-
known number of sources. G is the leadfield matrix
which links the source location and orientaion to the
electrodes location. G depends of the head model. n
is the noise. We can write

X = G S + n (11)

X and S can be extended to more than one dimension
to take time into account. S can either represent few
dipoles (dipole model) with M ≤ N or represent the full
head (image model - one dipole per voxel) with M �
N . In the following we will use the latter model.

The forward problem is to try and find the potentials
X on the scalp surface knowing the active brain sources
S. This approach is far simpler than the inverse ap-
proach and its solution is the basis of all Inverse problem
solutions.

The leadfield G is based on the Maxwell equations.
A finite element model based on the true subject head
can be use as lead field but we prefer to use a 4-spheres
approximation of the head. It is not subject dependent
and less computationally expensive. A simple method
consists of seeing the multi-shell model as a composition
of single-shells -much as Fourier uses functions as sums
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of sinusoid [27]. The potential v measured at electrode
position r from a dipole q in position rq is

v(r, rq, q) ≈
v1(r, µ1rq, λ1q) + v1(r, µ2rq, λ2q) + v1(r, µ3rq, λ3q) (12)

λi and µi are called Berg’s parameters [27]. They
have been empirically computed to approximate three
and four-shell head model solution.

When we are looking for the location and orientation
of the source, a better approach consists of separating
the non-linear search for the location and the linear one
for the orientation. The EEG scalar potential can then
be seen as a product v(r) = kt(r, rq)q with k(r, rq) a
3x1 vector. Therefore each single shell potential can be
computed as [28]

v1(r) = ((c1 − c2(r.rq))rq + c2‖rq‖2r).q

with

c1 ≡
1

4πσ‖rq‖2

(
2

d.rq

‖d‖3
+

1
‖d‖

− 1
‖r‖

)
(13)

c2 ≡
1

4πσ‖rq‖2

(
2

‖d‖3
+

‖d‖+ ‖r‖
‖r‖F (r, rq)

)
(14)

F (r, rq) = ‖d‖(‖r‖‖d‖+ ‖r‖2 − (rq.r)) (15)

The brain source space is limited to 361 dipoles lo-
cated on an half-sphere just below the cortex in a per-
pendicular orientation to the cortex. This is done be-
cause the activity we are looking at is concentrated on
the cortex, the activity recorded by the EEG is mainly
cortical activity and the limitation of the source space
considerably reduces the computation time.

5.2.2 Inverse Problem

The inverse problem can be formulated as a Bayesian
inference problem [29]

p(S|X) =
p(X|S)p(S)

p(X)
(16)

where p(x) stands for probability distribution of x.
We thus look for the sources with the maximum prob-
ability. Since p(X) is independent of S it can be con-
sidered as an normalizing constant and can be omitted.
p(S) is the prior probability distribution of S and repre-
sents the prior knowledge we have about the data. This
is modified by the data through the posterior probabil-
ity distribution p(X|S). This probability is linked to the
noise. We assume the noise is gaussian, with zero mean
and covariance matrix Cn

ln p(X|S) = (X −GS)t C−1
n (X −GS) (17)

where t stands for transpose. If the noise is white, we
can rewrite equation (17) as

ln p(X|S) = ‖X −GS‖2 (18)

In case of zero mean gaussian prior p(S) with vari-
ance CS , the problem becomes

argmax(ln p(S|X))
= argmax(ln p(X|S) + ln p(S))
= argmax((X −GS)t C−1

n (X −GS) + λStCSS

where the parameter λ gives the influence of the prior
information. And the solution is

Ŝ = GtC−1
n (GtC−1

n G + λC−1
S )−1X (19)

For a full review of a method to solve the Inverse
Problem see [29, ?, 30].

Methods based on different priors were tested. Pri-
ors ranged from the simplest - no prior information -
to classical prior such as the laplacian and to a spe-
cific covariance matrix. The well-know LORETA ap-
proach [30] showed the best results on our test set. The
LORETA [30] looks for a maximally smooth solution.
Therefore a laplacian is used as a prior. In (19) Cs is
a laplacian on the solution space and Cn is the identity
matrix.

To enable real time computation, leadfield and prior
matrices in (19) are pre-computed. Then we only mul-
tiply the pre-computed matrix with the acquired signal.
Computation time is less than 0.01s on a typical personal
computer.

5.2.3 Results and Application

In the present case of a BCMI, the result can be used for
three potential applications: the visualisation process, a
pre-filtering step and a processing step.

The current of the 361 dipoles derived using the in-
verse method is directly used in the visualisation pro-
cess. The current on every point of the half-sphere is
interpolated from the dipole currents. The result is pro-
jected on a screen.

6 Sound Synthesis

6.1 Introduction
At the end of the workshop, a performance of mu-
sic was presented with two bio-musicians and various
equipment and technicians on stage orchestrating a live
bio-music performance before a large audience. The
first instrument was a midi instrument based on additive
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synthesis and controlled by the musician’s electroen-
cephalogram along with an infrared sensor. The second
instrument, driven by electromyograms of the second
bio-musician, processed recorded accordion samples us-
ing granulation and filtering effects. Furthermore, bi-
ological signals managed the spatialized diffusion over
eight loudspeakers of the sound produced by two musi-
cians. We here present details of each of these instru-
ments.

6.1.1 Sound Synthesis

Artificial synthesis of sound is the creation, using elec-
tronic and/or computational means, of complex wave-
forms, which, when passed through a sound reproduc-
tion system can either mimic a real musical instrument
or represent the virtual projection of an imagined musi-
cal instrument. This technique was first developed using
digital computers in the late 1950s and early 1960s by
Max Matthews at Bell Labs. It does have antecedents,
however, in the musique concrète experiments of Pierre
Schaeffer and Pierre Henry and in the TelHarmonium of
Thaddeus Cahill amongst others. The theory and tech-
niques of sound synthesis are now widely developed and
are treated in depth in many well-known sources.

The chosen software environment, Max/MSP, makes
available a wide palette of sound synthesis techniques
including: additive, subtractive, frequency modulation,
granular etc. With the addition of 3rd party code li-
braries (externals) Max/MSP can also be used for more
sophisticated techniques such as physical modelling
synthesis.

6.1.2 Mapping

The commonly used term mapping refers, in the instance
of virtual musical instruments, to mathematical trans-
formations which are applied to real-time data received
from controllers or sensors so that they may be used as
effective control for sound synthesis parameters. This
mapping can consist of a number of different mathemat-
ical and statistical techniques. To effectively implement
a mapping strategy, one must well understand both the
ranges and behaviours of the controllers or sensors and
the nature of the data stream produced along with the
synthesis parameters which are to be controlled.

A useful way of thinking about mapping is to con-
sider its origin in the art of making cartographic maps
of the natural world. Mapping thus is forming a flat,
virtual representation of a curved, spherical real world
which enables that real world to be effectively navigated.
Implicit in this is the process of transformation or pro-
jection which is necessary to form the virtual represen-
tation.

Thus, to effectively perform a musically satisfying
mapping, we must understand well the nature of our data
sources (sensors and controllers) and the nature of the
sounds and music we want to produce (including intrin-
sic properties and techniques of sound synthesis, sam-
pling, filtering and DSP)

This poses significant problems in the case of biolog-
ically controlled instruments in that it is not possible to
have an unambiguous interpretation of the meanings of
biological signals whether direct or derived. There is
some current research in cognitive neuroscience which
may indicate directions for understanding and interpret-
ing the musical significance of encephalographic sig-
nals, but this is just beginning.

A simple example of a mapping is the alpha rhythm
spectral energy to musical intensity. It is well known
that strong energy in the frequency band (8-12 Hz) in-
dicates a state of unfocused relaxation without visual at-
tention in the subject. This has commonly been used
as a primary controller in EEG-based musical instru-
ments - such as in Alvin Lucier’s “Music for Solo Per-
former” - where strong Alpha EEG directly translate into
increased sound intensity and temporal density. If this is
not the desired effect then consideration has to be given
to how to transform the given data to produce the desired
sound or music.

6.2 Instrument 1 : an interface between
brain and sound

For this instrument, we used the following controls

• right or left body movement (Mu bandwidth)

• eyes open or closed (Alpha bandwidth)

• average brain activity (Alpha bandwidth)

This MAX/MSP patch is based upon these parameters.
The sound synthesis is done with a plug-in from Ab-
synth which is software controlled via the MIDI proto-
col. This patch creates MIDI events which control this
synthesis. This synthesis is in particular composed of
three oscillators, three Low Frequency Oscillators, and
three notch filters. There are two kinds of note trigger:

• a cycle of seven notes

• a trigger of single note

Pitch is not controlled continuously.
Regarding the first kind of note trigger, the cycle of

notes begins when the artist opens his eyes for the first
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time. Right or left body movements can control the di-
rection of cycle rotation and the panning of the result.
The resultant succession of notes is subjected of two ran-
domised variations of the note durations and the delta
time between each note.

In the second note trigger, alpha bandwidth is con-
verted to a number between 0 and 3, which is then di-
vided into three parts:

• 0 to 1 : this part is divided into five sections, one
note is attributed to each section and the time pro-
prieties are given by the dynamics of the alpha vari-
ations

• 1 to 2 : represents the variation of the Low Fre-
quency Oscillator (LFO) frequency

• over 2 : the sound is stopped

The EEG analysis for these controls happens over time.
To have an instantaneous controller, an infrared sensor
controller was added. Based on the distance between his
hand and the sensor, the artist can control:

• the rotation speed of the cycle, using the right hand

• the frequency of the two other LFO, using the left
hand

The performer decides the harmony before playing,
which, in the case of live performance, has proved to be
a good solution.

6.2.1 Results

The aim of this work was to create an instrument con-
trolled by electroencephalogram signals. Musical rela-
tionships are usually linked with gestures, yet, here no
physical interaction is present. Further, the possibility
for complex interactions between a traditional musical
instrument, like a guitar, and the performer, retains a
great power. To be interesting from an artistic point of
view, a musical instrument must provide a large expres-
sive palette to the artist.

The relationship between the artist and the music acts
in two directions: the musician interacts with sound pro-
duction by means of his EEGs but the produced sound
also interacts via a feedback influence on the mental
state of the musician. Future work could turn toward
the biofeedback potential for influencing sound.

6.3 Instrument 2 : Real-time granulation
and filtering on accordion samples

In the second instrument, sound synthesis is based on
the real-time granulation and filtering of recorded accor-
dion samples. During the demonstration, the musician

starts his performance by playing and recording a few
seconds of accordion which he will then process in real-
time. Sound processing was controlled by means of data
extracted from electromyograms (EMGs) in measuring
muscle contractions in both arms of the musician.

6.3.1 Granulation

Granulation techniques split an original sound into very
small acoustic events called grains and reproduce them
in high densities of several hundred or thousand grains
per second. A lot of transformations on the original
sound are made possible with this technique and a large
range of very strange timbres can be obtained. In our
instrument, three granulation parameters were driven by
the performer : the grain size, the pitch shifting, and the
pitch shifting variation (that controls the random varia-
tions of pitch).

In terms of mapping, the performer selected the syn-
thesis parameter he wanted to vary thanks to an addi-
tional midi foot controller and this parameter was then
modulated according to the contraction of his arm mus-
cles, measured as electromyograms. The contraction of
left arm muscles allowed choosing either to increase or
decrease the selected parameter, whereas the variation of
the parameters were directly linked to right arm muscle
tension.

6.3.2 Flanging

In addition to granulation, a flanging effect was imple-
mented in our instrument. Flanging is created by mix-
ing a signal with a slightly delayed copy of itself, where
the length of the delay, less than 10 ms, is constantly
changing. The performer had the ability to modulate
several flanging parameters (depth, feedback gain) sepa-
rately via his arm muscle contractions much as was done
to control the granulation parameters.

6.3.3 Balance dry/wet sounds

During the performance, the musician had the possibil-
ity to control the intensities of dry and wet sounds with
the contraction of his left and right arm respectively.
This control gave the musician the ability to cross-fade
original sound with the processed one by means of very
expressive gestures.

6.3.4 Results

Very interesting sonic textures, near or far from orig-
inal accordion sound, have been created by this instru-
ment. Granulation gave the sensation of clouds of sound,
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whereas, very strange sounds, reinforced by spatialisa-
tion effects on eight loudspeakers, were obtained using
certain parameter configurations of the flange effect.

As with any traditional musical instrument, the first
thing going forward will be to practice the instrument in
order to properly learn it. These training sessions will
aim to improve the mapping between sound parameters
and gestures. Data gloves and EMGs measuring muscles
contraction in other body parts (legs, shoulders, neck),
along with new kinds of sound processing could bring
interesting results.

6.4 Spatialization and Localization

The human perception of the location of sound sources
within a given sound environment are due to a complex
series of cues which have evolved according to the phys-
ical behaviour of sound in real spaces. These cues can
include: intensity, including right-left balance, relative
phase, early reflections and reverberation, Doppler shift,
timbral shift and many other factors which are actively
studied by researchers in auditory perception.

The term ‘spatialisation’ refers to the creation of a
virtual sound space using electronic techniques (ana-
logue or digital) and sound reproduction equipment (am-
plifiers and speakers) to either mimic the sound-spatial
characteristics of some real space or present a virtual
representation of an imaginary space reproduced via
electronic means. The term ‘localisation’ refers to the
placement of a given sound source within a given spa-
tialised virtual sound environment using the techniques
of spatialisation. Given the greatly increased real-time
computational power available in todays personal com-
puters, it is now possible to perform complex and sub-
tle spatialisation and localisation of sounds using mul-
tiple simultaneous channels of sound reproduction (four
or more).

The implementation of a system for the the locali-
sation of individual sound sources and overall spatial-
isation in this project was based around an 8-channel
sound reproduction system. Identical loudspeakers were
placed equidistant about a centre point to form a circu-
lar pattern around the listening space. All speakers were
elevated approximately to ear level.

Sounds were virtually placed within the azimuth of
this 360 degree circular sound space by the use of mix-
ing software which approximates an equal-power pan-
ning algorithm. The amplitude of each virtual sound
source can be individually controlled. Artificial reverb
can be added to each sound source individually in order
to simulate auditory distance. Finally, each individual
sound source can be placed at any azimuth and panned
around the circle in any direction and at any speed.

Future implementations of this software will take into
account some more subtle aspects of auditory localisa-
tion including timral adjustments and Doppler effects.

6.5 Visualization
In a traditional concert setting, the visual aspect of
watching the musicians play is an important part of the
overall experience. With an EEG driven musical instru-
ment, the musician must sit very still and immobile. By
adding a visual dimension to this, we can enhance the
spectator’s appreciation of the music.

We studied different ways of visualising the EEG and
finally chose to present the signal projected on the brain
cortex as explained in section 5.2. While the musician
is playing, EEG data are processed once per second us-
ing the inverse solution approach and then averaged. A
half sphere with the interpolation of the 361 solution is
projected on the screen.

7 Conclusion

During this workshop, two musical instruments
based on biological signals were developed. One was
based on EEG and the other on EMG. We chose to
make an intelligent musical instrument rather than to just
sonify the data. The same biosignals were also used to
spatialise the sound and visualise the biodata.

We have built an architecture for communication be-
tween data acquisition, signal processing and sound syn-
thesis nodes. Our software is based on Matlab and
Max/MSP and thus new signal processing and sound
synthesis algorithms can be easily implemented.

The present paper reflects the work of seven people
over four weeks. This work did not stop at the end of
the workshop - it is ongoing and there is much still to be
done. The signal processing and musical instrument de-
signs can be improved. The musicians need to achieve
better control of their instruments using biological sig-
nals. Mapping algorithms need to be improved and the
software implementations must be made more robust.
Going forward, the members of this team, together and
individually, are committed to pursuing the dream of a
Music which springs eternal from human biological sig-
nals.
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