PART II
(short-term) Modeling of the speech signal

Definitions

- Speech processing is based on **speech models**
- Models have **parameters**, like black boxes have switches and sliders
- Parameters are **estimated** via **algorithms**
- Errors: output of model ≠ input signal
 - **Modeling** (intrinsic) errors
 - **Estimation** (extrinsic) errors
- Algorithms **minimize** errors

Families of speech models

- **Articulatory** models (parameters = position of tongue, glottis, lip opening, etc.)
- **Production** models (electrical analogy of vocal tract: combination of electrical generators and filters; parameters = switches and coef. of filters)
- **Phenomenological** models (pure signal processing techniques for modeling the speech signal or its spectrum: FFT, wavelets, time-domain processing, etc.)

Contents

- Production models
 - **Autoregressive modeling of speech**
 - Autoregressive modeling of stationary random signals
 - AR model - Estimation algorithms
 - Autoregressive estimation of speech
 - Extensions of the AR model
 - Transform-based models **(phenomenological)**
 - Short-term Fourier transform
 - Definition - Interpretation
 - Relationship with AR modeling
 - Hybrid harmonic+noise model - Estimation
 - Homomorphic (or cepstral) transform
 - Definition - Properties
 - Relationship with AR modeling
 - F0 estimation
Autoregressive modeling of speech (Fant, 50’s)

\[G(z) = \frac{1}{(1-\alpha z^{-1})(1-\beta z^{-1})} \]

Glottal volume velocity waveform

\[V(z) = \frac{B}{\prod_{k=1}^{K}(1 + b_1 z^{-1} + b_2 z^{-2})} \]

Volume velocity waveform

\[R(z) = c(1 - z^{-1}) \]

Pressure waveform

Contents

- Production models
 - Autoregressive modeling of speech
 - Autoregressive modeling of stationary random signals
 - AR model - Estimation algorithms
 - Autoregressive estimation of speech
 - Extensions of the AR model
- Transform-based models (phenomenological)
 - Short-term Fourier transform
 - Definition - Interpretation
 - Relationship with AR modeling
 - Hybrid harmonic+noise model - Estimation
 - Homomorphic (or cepstral) transform
 - Definition - Properties
 - Relationship with AR modeling
- F0 estimation

Autoregressive modeling of stationary random signals

\[G(z)V(z)R(z) \approx \sigma/A_p(z) : « \text{All pole} » \text{ model} \]

\[x(n) \begin{cases} \mathcal{N}(0, \sigma^2) \\
\mathcal{N}(0, \sigma^2) \end{cases} \]

\[e(n) \begin{cases} \mathcal{N}(0, \sigma^2) \\
\mathcal{N}(0, \sigma^2) \end{cases} \]

\[\frac{B(z)}{A(z)} \]

\[\frac{1}{A(z)} \]

Much simpler for estimation : AR model

\[x_{AR}(n) \]

\[x_{ARMA}(n) \]
Autoregressive modeling of stationary random signals

- Each sample \(x(n) \) is the sum of a completely (linearly) predictable component, and an « innovation » component \(e(n) \)

\[x(n) = e(n) + \sum_{i=1}^{p} a_i x(n-i) \]

\(\Rightarrow \) Autoregressive or linear prediction (LP) model

\[e(n) \text{ is the output of the inverse filter} \]

\[YULE-WALKER \text{ equations} \]

\[
\sum_{j=1}^{p} \phi_j (i-j) a_j = -\phi_i (i \in \{1, \ldots, p\})
\]

\[
\begin{bmatrix}
\phi_0 (0) & \phi_1 (1) & \ldots & \phi_{p-1} (p-1) & a_1 \\
\phi_1 (1) & \phi_0 (0) & \ldots & \phi_{p-2} (p-2) & a_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\phi_{p-1} (p-1) & \phi_{p-2} (p-2) & \ldots & \phi_0 (0) & a_p \\
\end{bmatrix}
= -
\begin{bmatrix}
\phi_1 (1) \\
\phi_2 (2) \\
\vdots \\
\phi_p (p) \\
\end{bmatrix}
\]

\[\Phi_p^T a = -\varphi_p^2 \]

- \(p \) linear equations with \(p \) unknowns \(\Rightarrow O(p^3) \)?
- Toeplitz matrix \(\Rightarrow O(p^2) \) : recursively on the prediction order

LEVINSON SCHUR(-LEROUX-GUEGEN)

YULE-WALKER equations

\[\sigma_e^2 = E[x^2(n)] = E \left[\sum_{j=0}^{p} a_j x(n-i) \sum_{j=0}^{p} a_j x(n-j) \right] \]

\[= \sum_{i=0}^{p} a_i a_i E[x(n-i)x(n-j)] \]

\[= \sum_{i=0}^{p} a_i a_i \phi_i (i-j) \]

\[\frac{\partial \sigma_e^2}{\partial a_i} = 0 \quad (i = 1, \ldots, p) \]

\[2\sum_{j=0}^{p} \phi_i (i-j) a_j = 0 \]

\[\sum_{j=1}^{p} \phi_i (i-j) a_j = -\phi_i \quad (i = 1, \ldots, p) \]

- **LEVINSON algorithm**

\[\begin{bmatrix}
\phi_0 (0) & \phi_1 (1) & \ldots & \phi_{m-1} (m-1) & a_1^{m-1} \\
\phi_1 (1) & \phi_0 (0) & \ldots & \phi_{m-2} (m-2) & a_2^{m-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\phi_{m-1} (m-1) & \phi_{m-2} (m-2) & \ldots & \phi_0 (0) & a_p^{m} \\
\end{bmatrix}
= -
\begin{bmatrix}
\phi_1 (1) \\
\phi_2 (2) \\
\vdots \\
\phi_m (m) \\
\end{bmatrix}
\]

Find solution for order \(m+1 \) from sol. for \(m \)?
LEVINSON algorithm

- **Initialization**

 \[a_m(0) = 1, \quad m = 1, 2, \ldots, p \quad a_0 = \phi_s(0) = \sigma_s^2 \]

- **Recursion on** \(m=0 \ldots p-1 \)

 \[k_{m+1} = -(1/a_m) \sum_{i=0}^{m-1} a_m(i) \cdot \phi_s(m-i) \]

 \[a_m(i) = a_{m-1}(i) + k_m \cdot a_{m-1}(m-i) \]

 \[a_{m+1}(m) = k_{m+1} \]

 \[a_{m+1} = a_m(1-k_{m+1}) \]
\(k_i \): PARCOR coefficients

- Naturally appear in the LEVINSON recursion
- Can be physically interpreted as area ratios of acoustic tubes in series
- Equivalent to prediction coefficients (there is a recursion formula for \(\{a_i\} \rightarrow \{k_i\} \rightarrow \{a_i\} \))
- Transfer function of \(1/A(z) \) much less sensitive to \(\Delta k_i \) than to \(\Delta a_i \)
- Good interpolation properties
- Correspond to the lattice filter structure for \(1/A(z) \)
- \(1/A(z) \) stable if \(-1 < k_i < +1\)

How good are the \(a_i \)'s or \(k_i \)'s?

\[
\phi_x(k) = \phi_{AR}(k)
\]
for \(k = 0 \ldots p \)
Contents

- Production models
 - Autoregressive modeling of speech
 - Autoregressive modeling of stationary random signals
 - AR model - Estimation algorithms
- Autoregressive estimation of speech
 - Extensions of the AR model
- Transform-based models (phenomenological)
 - Short-term Fourier transform
 - Definition - Interpretation
 - Relationship with AR modeling
 - Hybrid harmonic+noise model - Estimation
 - Homomorphic (or cepstral) transform
 - Definition - Properties
 - Relationship with AR modeling
- F0 estimation

Short-term analysis of speech

- Speech is not stationary (if it were, information \(\equiv 0 \))
- "Pseudo-stationary" on 30 ms
- Frame-by-frame (typ.: \(N=30\text{ms}/L=10\text{ms} \))

- ex: \(F_s=10\text{kHz} \), \(L=100 \) samples, \(N=300 \) samples

Yule-Walker equations (again)

\[
E_p = \sum_{n=-\infty}^{\infty} e^2(n) = \sum_{i=0}^{p} a_i \sum_{n=-\infty}^{\infty} x(n-i) \sum_{j=0}^{\infty} a_j x(n-j) = \sum_{i=0}^{p} a_i \sum_{n=-\infty}^{\infty} [x(n-i)x(n-j)] = \sum_{i=0}^{p} a_i a_j r_s(i-j)
\]

- Minimize the energy \(E_p \) of the prediction error \(e(n) \)
- Same formalism as in the stationary case, applied here to a signal which takes non-zero values only for \(n=0..N-1 \)
- Same Yule-Walker equations, except \(\phi \) is estimated as \(r_s \)

\[
2 \sum_{i,j=0}^{p} r_s(i-j) a_i = 0 \quad (i=1...p)
\]

\[
\sum_{i,j=0}^{p} r_s(i-j) a_i = -r_s(0) \quad (i=1...p)
\]

- Toeplitz matrix \(\Rightarrow O(p^2) \) using Levinson or Schur (still slightly faster than Levinson)
- NB : this is actually called the « autocorrelation approach »; in contrast, the so-called « covariance approach » is based on a different expression of the energy of \(e(n) \) and leads to a non-Toeplitz matrix...
In practice

• Sampling frequency
 - telephone speech: 8 kHz
 - speech recognition: 10 kHz
 - speech synthesis: 16 kHz
 - multimedia applications 11.25 kHz, 22.5 kHz, et 44.1 kHz

• Prediction order \(p \)
 - 2 poles for shaping the glottal velocity volume waveform
 - 2 poles (1 resonator) per formant (≈ per kHz of bandpass)
 \[p_{opt} = 2 + F_s \]

In practice

• (Pre-accentuation: filter \(P(z) = 1 - \mu z^{-1} \))
• (Hamming) Weighting window
 - prevent \(e(n) \) from naturally taking high values at the beginning and at the end of the frame
 - let each set of prediction coefficients be more representative of the 10 central ms
 \[w(n) = 0.54 + 0.46\cos\left(2\pi \frac{n}{N}\right) \]

• Computational load

<table>
<thead>
<tr>
<th></th>
<th>(N=300, p=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighting</td>
<td>(N)</td>
</tr>
<tr>
<td>Autocorrelation</td>
<td>((N - p / 2) (p + 1))</td>
</tr>
<tr>
<td>Schur</td>
<td>(p (p + 1))</td>
</tr>
<tr>
<td></td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>3245</td>
</tr>
<tr>
<td></td>
<td>110</td>
</tr>
</tbody>
</table>
Contents

• Production models
 – Autoregressive modeling of speech
 – Autoregressive modeling of stationary random signals
 • AR model - Estimation algorithms
 – Autoregressive estimation of speech
 – Extensions of the AR model
• Transform-based models (phenomenological)
 – Short-term Fourier transform
 • Definition - Interpretation
 • Relationship with AR modeling
 • Hybrid harmonic+noise model - Estimation
 – Homomorphic (or cepstral) transform
 • Definition - Properties
 • Relationship with AR modeling
• F0 estimation

Problem with pseudo-stationarity

• \(r_x \) means nothing for plosives \(\Rightarrow \) meaning of \(\{a_i\} \)?
• Explosions of plosives last 1-2 ms; they are synthesized on 10 ms at best
• In practice, the ear is much less sensitive to the spectrum of highly transient sounds

LP Speech synthesis

• Parameters are changed every 10 ms

\[
V/U \rightarrow s \text{ coefficients} \rightarrow \frac{1}{A_i(z)}
\]

• \(e(n) \) is replaced by a pulse sequence or by white noise \((\mu=0, \sigma=1) \), and amplified with \(\sigma=\sigma_e \)

Problem with anti-formants

ARMA would be better for nasal sounds
Problem with mixed voicing

Voiced fricatives: partly voiced, partly unvoiced

- Decreasing modeling errors
 - If the prediction error $e(n)$ was used as input for $1/A(z)$: $e_r(n) = 0$
 - In practice, the excitation waveforms used are a very rough approximation of $e(n)$
 - Find more realistic excitation waveforms?

Multipulse Linear Prediction

MP-LPC = LP model excited with small number of pulses, whose positions and amplitudes have to be adjusted

Code-Excited Linear Prediction

CELP = LP model excited with a real excitation signal, taken from a list (=codebook) of typ. 1024 or 2018

Code-Excited Linear Prediction

- MP-LPC
- CELP
Contents

- Production models
 - Autoregressive modeling of speech
 - Autoregressive modeling of stationary random signals
 - AR model - Estimation algorithms
 - Autoregressive estimation of speech
 - Extensions of the AR model
- Transform-based models (phenomenological)
 - Short-term Fourier transform
 - Definition - Interpretation
 - Relationship with AR modeling
 - Hybrid harmonic+noise model - Estimation
 - Homomorphic (or cepstral) transform
 - Definition - Properties
 - Relationship with AR modeling
- F0 estimation

Short-term Fourier Transform

- Continuous: \(x(t) \leftrightarrow X(t, \omega) = \int_{-\infty}^{\infty} x(\tau)w(t-\tau)e^{-j\omega \tau} \, d\tau \)

- Discrete: \(x(n) \leftrightarrow X(n, k) = \sum_{i=0}^{N-1} x(i)w(n-i)e^{-jk\omega n} \)

- Short-term spectral density function:
 \(S_s(n, \phi) = |X(n, k)|^2 \) with \(\phi = k \frac{2\pi}{N} \)

- Weighting window \(w(n) \)
 - if too long, averaging occurs (+stationnarity?)
 - if too short, frequency resolution falls down
 - shape?
Narrow-band: voiced

Narrow-band: unvoiced

Contents

- Production models
 - Autoregressive modeling of speech
 - Autoregressive modeling of stationary random signals
 - AR model - Estimation algorithms
 - Autoregressive estimation of speech
 - Extensions of the AR model
- Transform-based models (phenomenological)
 - Short-term Fourier transform
 - Definition - Interpretation
 - Relationship with AR modeling
 - Hybrid harmonic+noise model - Estimation
 - Homomorphic (or cepstral) transform
 - Definition - Properties
 - Relationship with AR modeling
- F0 estimation

STFT ↔ AR model?

\[
\begin{align*}
\phi_s(k) & \leftrightarrow S_s(\phi) = \sum_k \phi_s(k)e^{j\phi} \\
\phi_{uAR}(k) & \leftrightarrow S_{uAR}(\phi) \\
S_{uAR}(\phi) & = S_u(\phi) \left| \frac{\sigma}{A(e^{j\phi})} \right|^2 = \left| \frac{\sigma}{A(e^{j\phi})} \right|^2 \\
\phi_{uAR}(k) & = \phi_s(k) \quad \text{for } k = 0,1,\ldots, p \\
\end{align*}
\]

by definition

\[
\left| \frac{\sigma}{A(e^{j\phi})} \right|^2 \quad \text{approximates the envelope of } S_s(\phi)
\]

NB: this is also applicable to short term estimations
Contents

- Production models
 - Autoregressive modeling of speech
 - Autoregressive modeling of stationary random signals
 - AR model - Estimation algorithms
 - Autoregressive estimation of speech
 - Extensions of the AR model
- Transform-based models *(phenomenological)*
 - **Short-term Fourier transform**
 - Definition - Interpretation
 - Relationship with AR modeling
 - **Hybrid harmonic+noise model - Estimation**
 - Homomorphic *(or cepstral)* transform
 - Definition - Properties
 - Relationship with AR modeling
- F0 estimation

Hybrid harmonic/noise model

- Harmonic component defined by the amplitudes and phases of harmonics: \(\{\text{amp}_i\}, \{\text{phase}_i\}\)
- Noise component defined by the s.d.f. of \(x_n(t)\)

Hybrid H/N estimation

- Rough F0 estimation *(comb-filter-like)*
- Estimate the parameters of the harmonic part

\[
e_p(t) = \int_{-\infty}^{\infty} w^2(t-\tau) |x(\tau) - x_h(\tau)|^2 d\tau = \frac{1}{2\pi} \int_{-\infty}^{\infty} [S_x(t,\omega) - S_{x_h}(t,\omega)]^2 d\omega
\]

with \(x_h(t) = \sum_{i=-N}^{N} \text{amp}_i e^{j\text{phase}_i} x(t)\) and \(a_{-i} = a^*_i\)

- Typical least squares minimization problem:

\[
Aa = b
\]

- Solution:
 \[
 A^H A a = A^H b = Ra = r
 \]
 - trivial if \(R\) is diagonal
 - Levinson if \(R\) is Toeplitz
 - Cholesky otherwise (\(R\) is always symmetric)
Hybrid H/N estimation

- Repeat on a grid of F_0 values around initial F_0
 - Precision on Nth harmonic is $N \times$ precision on F_0
 - $F_0 = 100$ Hz; $T_0 = F_s/100$ samples
 - if error = 1 sample on T_0
 - $= 100 - F_s/(F_s/(100+1))$ Hz on F_0
 - $= 10000/(F_s+10000)$ Hz on F_0

- Precision required: at least 1/8th sample

- Get the s.d.f of the « noise » part with:
 \[x_n(t) \approx x(t) - x_h(t) \]

H/N modeling errors

- Harmonics are found in noise (no orthogonality)
- F_0 is not constant on the analysis frame ⇒ broadening of harmonic lobes at high frequencies
- In real speech, noise is correlated with harmonics in the time domain

Hybrid H/N synthesis

- Harmonics:
 - \sum of cosines
 - \sum of outputs of digital oscillators whose frequencies are set to that of harmonics
 - \sum of main lobes in the freq. domain + IFFT

- Noise:
 - \sum of narrow band noises, obtained by (amplitude) modulating a low frequency noise with harmonics
 - frequency-domain noise matching the required s.d.f. + IFFT

--

Copyright (c)2002 Faculté Polytechnique de Mons - T. Dutoit
Contents

- Production models
 - Autoregressive modeling of speech
 - Autoregressive modeling of stationary random signals
 - AR model - Estimation algorithms
 - Autoregressive estimation of speech
 - Extensions of the AR model
- Transform-based models (*phenomenological*)
 - Short-term Fourier transform
 - Definition - Interpretation
 - Relationship with AR modeling
 - Hybrid harmonic+noise model - Estimation
 - Homomorphic (or cepstral) transform
 - Definition - Properties
 - Relationship with AR modeling
- F0 estimation

Real cepstrum

- $c_x(n)$ is the \mathcal{g}^{-1} of the amplitude spectrum of $x(n)$ in neper (\approx in dB)
- $c_x(n)$ can be computed with FFT$^{-1}$, provided N_{FFT} is big enough (to avoid undersampling of $X(\omega)$)
- NB: cepstrum, quefrequency, liftering :-)

Homomorphic transform

- Complex cepstrum $x(n)$

- Convolution becomes summation:
 \[x(n) = u(n) * h(n) \rightarrow X(z) = U(z)H(z) \rightarrow x(n) = u(n) + h(n) \]
- If $X(z)$ rational, then $x(n)$ falls faster than $1/n$

Applications to speech

- If $x(n)$: measure T_0 : easier on $c_x(n)$ than on $x(n)$
- *Measure the spectral envelope of $x(n)$: Isolate $c_h(n) \rightarrow h(n)$*
Applications to speech

Cepstral Mean Subtraction

If \(x(n) = h(n) \) (tel. line)

\[
\begin{align*}
 c_x(n) &= c_{\text{speech}}(n) + c_{\text{line}}(n) \\
 \mathbb{E}[c_x(n)] &= \mathbb{E}[c_{\text{speech}}(n)] + \mathbb{E}[c_{\text{line}}(n)] \\
 &= \mathbb{E}[c_{\text{line}}(n)] + k \quad (\text{estimator of } c_{\text{line}}(n))
\end{align*}
\]

\(c_{\text{CMS}}(n) = c_x(n) - \mathbb{E}[c_x(n)] \)

\(c_{\text{CMS}}(n) \) is independent from the channel

Used in speech recognition

Relationship with AR model

The first values of the cepstrum are characteristic of the transfer function of the vocal tract \(\Rightarrow \) must be related to \(\{a_i\} \)

\[
\begin{align*}
 \ln(\frac{1}{A(z)}) &= \sum_{n=0}^\infty x(n) z^{-n} \\
 -A'(z) / A(z) &= \sum_{n=0}^\infty n x(n) z^{-(n+1)} \\
 -\sum_{i=0}^n i a_i z^{-(i+1)} &= \left[\sum_{i=0}^n a_i z^{-i} \right] \left[\sum_{n=0}^\infty n x(n) z^{-(n+1)} \right] ...
\end{align*}
\]

Contents

- Production models
 - Autoregressive modeling of speech
 - Autoregressive modeling of stationary random signals
 - AR model - Estimation algorithms
 - Autoregressive estimation of speech
 - Extensions of the AR model
- Transform-based models *(phenomenological)*
 - Short-term Fourier transform
 - Definition - Interpretation
 - Relationship with AR modeling
 - Hybrid harmonic+noise model - Estimation
 - Homomorphic (or cepstral) transform
 - Definition - Properties
 - Relationship with AR modeling
- F0 estimation
- F0 estimation
 - Short-term estimation of F0 on an analysis frame (at least 2 times the local pitch period); produces candidates for F0, with score
 - Long-term post-processing, making the ultimate choice among candidates (on a 3 frames-basis, usually), as a function of their score and taking into account constraints and correcting estimation biases
Autocorrelation-based F0 estimation

- Periodicity of x implies a max in $r_x(k)$ for $kT_s \approx T_0$
 $$r(k) = \sum_{n=-\infty}^{\infty} x(n)x(n+k) \quad \text{for } k = K_{\text{min}}, ..., K_{\text{max}}$$

- Computational load \gg
- F0 doubling for females, because of $F1 \approx H2$
 \Rightarrow use threshold(k)

Simplified Inverse Filtering Technique (SIFT)

- Finds the max of the autocorrelation of the error signal ($\Rightarrow F1 \approx H2 : \text{flat envelope}$!)
- Decimation-interpolation for lower computational cost

Cepstrum-based F0 estimation

- Cepstrum is $\text{FFT}^{-1}(\log\text{Spectrum})$
- Log spectrum is flatter than Spectrum
- Cepstrum is more pulse-like than signal

[Diagram of SIFT process]
Estimating F0 with a comb filter

- Idea: filter signal with comb filter whose F0 varies from 70 to 500 Hz, and measure the energy of the output: \(F_0 = F(\max(\text{energy})) \)

- Usually performed in the frequency domain directly: \(F_0 = F(\max(\langle FFT(x)^2, H^2(\text{filter})\rangle)) \)

Conclusion

- LP model is good at modeling the short-term spectral envelope (id. for cepstrum)
- MP-LPC, CELP, Hybrid H/N add a better modeling of the contribution of the excitation component (the fine spectral structure)
- NB: these were models of the acoustic component of speech only...

Post-processing

- Based on Dynamic Programming:
 From the possible F0 values for successive frames, find the sequence which minimizes a cost function

- Logical filtering
 - ex: one V frame in an island of UV frames \(\Rightarrow \) UV