1. On cherche à réaliser l’approximation du filtre passe-haut suivant :

![Diagramme du filtre passe-haut](image)

On demande l’ordre du filtre obtenu par approximation de Butterworth sachant :

- que la formule de conversion passe-haut vers passe-bas normalisé est :

\[\Omega = -\frac{\omega_c}{\omega} \]

- que les formules de calcul de l’ordre de l’approximation de Butterworth (pour un passe-bas normalisé dont l’atténuation en bande passante est au plus égale à \(A_m \) dB, dont la fréquence de début de bande atténuée vaut \(\omega_s \), et qui présente à cette pulsation une atténuation d’au moins \(A_m \) dB) est donné par :
2. Après approximation de ce filtre passe-haut par Cauer, on obtient les pôles et zéros suivants :

zeros = 1000 *
 0.0000 + 8.1542i
 0.0000 - 8.1542i
-0.0000 + 5.4572i
-0.0000 - 5.4572i
 0.0000

poles = 10000 *
 -2.9369
 -0.6182 + 1.5316i
 -0.6182 - 1.5316i
 -0.0986 + 1.2332i
 -0.0986 - 1.2332i

On demande d’esquisser les réponses en fréquence des cellules nécessaires à la synthèse et de donner l’ordre dans lequel on doit les placer.
SOLUTIONS :

1.
\[\log_{10}(\frac{10^5-1}{10^{0.05}-1})/2/\log_{10}(2) \]
\[
\text{ans } = 9.8222 \Rightarrow 10
\]

On trouve d'ailleurs, sous Matlab :
\[
[n,wn]=\text{buttord}(2000*2*\pi,1000*2*\pi,0.5,50,'s')
\]
\[
n = 10
\]
\[
wn = 1.1173e+004
\]

2.
\[H(p) \text{ a en réalité été généré par approximation elliptique :} \]
\[
[n,wn]=\text{ellipord}(2000*2*\pi,1000*2*\pi,0.5,50,'s');
\]
\[
[N,D]=\text{ellip}(n,0.5,50,wn,'\text{high}', 's')
\]
\[
N =
\begin{bmatrix}
1.0e+015 & & & & 1.9802 & -0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & & \\
\end{bmatrix}
\]
\[
D =
\begin{bmatrix}
1.0e+021 & & & & 0.0001 & 1.2262 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & & \\
\end{bmatrix}
\]
\[
z=\text{roots}(N)
\]
\[
z =
\begin{bmatrix}
1.0e+003 & & & & 8.1542i &\text{ (i est l'unité imaginaire)} \\
0.0000 & -8.1542i & & & & \\
-0.0000 & 5.4572i & & & & \\
-0.0000 & -5.4572i & & & & \\
0.0000 & & & & & \\
\end{bmatrix}
\]
\[
p=\text{roots}(D)
\]
\[
p =
\begin{bmatrix}
1.0e+004 & & & & 2.9369 & \text{ (i est l'unité imaginaire)} \\
-0.6182 & 1.5316i & & & & \\
-0.6182 & -1.5316i & & & & \\
-0.0986 & 1.2332i & & & & \\
-0.0986 & -1.2332i & & & & \\
\end{bmatrix}
\]

Facteurs de qualité :
\[
\text{abs}(p)./2./\text{real}(p)
\]
\[
\text{ans } =
\begin{bmatrix}
-0.5000 & & & & \\
-1.3358 & & & & \\
-1.3358 & & & & \\
-6.2718 & & & & \\
-6.2718 & & & & \\
\end{bmatrix}
\]

Pôles et zéros :
\[
\text{zplane}(N,D) ;
\]

\[1\] Les solutions sont ici données via Matlab, par facilité. Pendant l’examen, l’étudiant obtient ces solutions de façon différente : il utilise uniquement sa machine et les connaissances qu’il a acquises au cours. Les graphiques sont par ailleurs tracés à la main, et on veille à y fait apparaître explicitement les point caractéristiques : fréquences de cassure, facteurs de qualité, pentes, etc.
Réponses des cellules :
% (z1et2-p4et5) et (z3et4-p2et3) puis pl
N1=poly([z(1) z(2)]);
N1 =
1.0e+007 *
 0.00000001000000 -0.00000000000000 6.64905851966906
D1=poly([p(4),p(5)]);
D1 =
1.0e+008 *
 0.00000001000000 0.00001972533560 1.53050681392854
%facteur K pour cette cellule
K1=1; % H1(p) doit valoir 1 en HF : p->infini
K1 =
2.3018
freqs(K1*N1,D1);

figure(2)
N2=poly([z(3) z(4)]);
N2 =
1.0e+007 *
 0.00000001000000 0.00000000000000 2.97812933554771
D2=poly([p(2),p(3)])
D2 =
1.0e+008 *
 0.00000001000000 0.00012364350434 2.7280466081810
K2=1; % H2(p) doit valoir 1 en HF : p->infini
freqs(K2*N2,D2);

figure(3)
N3= poly(z(5));
D3= poly(p(1));
K3=1; % H3(p) doit valoir 1 en HF : p->infini
freqs(K3*N3,D3));